小额贷款公司利率神经网络预测模型研究.docVIP

小额贷款公司利率神经网络预测模型研究.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
小额贷款公司利率神经网络预测模型研究.doc

小额贷款公司利率神经网络预测模型研究   摘要:利率风险是小额贷款公司面临的主要风险之一,科学的利率预测方法是小额贷款公司利率风险控制的前提。本文以广州民间金融街小额贷款公司的利率数据,验证了BP神经网路时间序列预测模型具有较好的利率预测能力和推广能力。   关键词:利率风险 利率预测 BP神经网络模型   一、小额贷款公司利率预测概述   (一)小额贷款公司利率风险   利率风险是指市场利率变动的不确定性给金融机构造成损失的可能性。随着我国金融市场利率市场化改革的推进,利率风险将成为小额贷款公司面临的主要风险之一。由于小额贷款公司利率风险管理体制不健全、对利率风险认识不够、缺乏相关领域专业人才等因素,使得当市场利率变动时,小额贷款公司往往会面临较大的利率风险。   (二)利率预测:小额贷款公司利率风险控制的前提   影响小额贷款公司市场利率变动的因素来自多个方面,包括运营成本、资金成本、投资项目的收益率水平、同期商业银行的短期贷款利率、社会信用状况、贷款规模状况、预期利润率以及各种补贴等,此外,通货膨胀率、自然灾害等也会对小额贷款公司利率定价产生一定的影响。为了避免或减少利率变动所带来的风险损失,小额贷款公司必须掌握科学的利率预测方法和技术,建立有效的利率风险控制体系。   准确预测利率是有效进行风险管理的前提,利率预测的内容有:利率变动的方向、变动的水平、周期性的转折点等。对市场利率走势进行预测是金融机构利率风险管理工作的前提与基础,尤其在监管部门或者金融机构采取积极主动的风险管理策略时,科学准确的利率预测显得更为重要。科学准确的利率预测结果可以为小额贷款公司的资产负债管理提供可靠的决策依据,及时运用适当的方法和相应的工具,才能在利率变动中最大限度地减少风险损失、增加经营收益。   二、利率预测模型-BP神经网络   (一)神经网络预测原理   BP(Back-Propagation)神经网络是一种按照误差逆传播训练的多层前馈神经网络,是目前应用最广泛的神经网络模型之一。BP神经网络包括两个方面,一是信号向前传播,二是误差反向传播。它不需要预先知道具体的映射关系,而是通过学习和储存大量的输入、输出之间的映射关系,然后利用反向传播不断调整网络的权值和阈值,使得网络的误差平方和最小。BP神经网络能够实现输入到输出的任何复杂非线性映射关系,对求解内部机制复杂问题具有很大的优势,且网络具有一定的概括和推广功能。因此本文中将利用BP神经网络对小额贷款公司利率数据进行拟合预测。由于小额贷款公司的利率数据可以看成一个时间序列,并假设利率时间时间序列数据为■,时间序列预测的含义就是通过一定的算法实现利用序列前N个时刻的值,预测出后M个时刻的值。其中,对于数据样本的分类以序列前N个时刻的数据做为滑动窗,将其映射为M个值,则这M个值代表前N个数据后的M个时刻上的预测值。将数据分成一定数量的样本后,如果把每个样本的前N个值作为神经网络的输入,后M个值作为目标输出。通过学习,就可以利用神经网络实现从RN到RM的映射,实现预测利率数据时间序列的目的。   (二)利率预测的基本步骤   利用BP神经网络进行时间序列数据进行预测前,需要先将小额贷款公司利率数据划分为用于训练(或拟合)和预测两大部分。本文采用BP神经网络对广州民间金融街的小额贷款公司利率数据进行预测,具体实现步骤如下:   1、构造网络训练样本   受各种复杂因素影响下的小额贷款公司利率是一个动态变化、不稳定的非线性系统,其未来走势除了受周围经济环境的影响外,还会受到某些人为因素、政府调控行为等的影响。在构建神经网络过程中有必要选择正常运作下的利率样本数据,因为异常数据将会导致神经网络预测能力下降。选取多少样本数据进行训练也是一个重要的考虑因素,当训练样本数据太大时可能会使得计算量大大增加,训练结果无法拟合、收敛,将最终导致预测失败,而过少的样本数据又可能导致拟合误差过大。在本文中选取了小额贷款公司期限结构为1个月的利率数据样本进行BP神经网络的构建。图1所示为2012年6-12月连续180天广州民间金融街民间借贷期限结构为1个月的利率数据时间序列走势图。   2、数据样本预处理   如果数据样本比较复杂,在利用神经网络进行预测前,为改善数据样本本身的分布特征,降低神经网络对数据样本的敏感度,避免原始数据过大造成网络麻痹,可以将原始数据进行适当预处理或变换,使得数据样本能够主动适应网络,提高网络的学习预测能力。其中最常用的预处理方法是将原始数据进行归一化处理。图2为归一化后的利率时序图。   3、构造训练样本   基于大量利率历史数据,进行预测,并对这些利率数据进行技术分析时,分析周期的选择恰当与否对预测结果会有直接的影响。基于研究考虑,本例

文档评论(0)

jingpinwedang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档