微软邓力:驱动大数据人工智能多种应用的三类深度学习模式.pdf

微软邓力:驱动大数据人工智能多种应用的三类深度学习模式.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
for Wide-Ranging AI Applications with Big Data 驱动大数据人工智能多种应用的三类深度学习模式 Li Deng Chief Scienst of AI Microso (Research and ASG), Redmond, WA, USA Keynote at CAAI (中国人工智能大会); August 26, 2016 Thanks go to many colleagues at Microso and collaborang universies Definion Deep learning is a class of machine learning algorithms that •  use a cascade of many layers of nonlinear processing •  are part of the broader machine learning field of learning representaons of data facilitang end-to-end opmizaon •  learn mulple levels of representaons that correspond to different levels of abstracon •  …, … 2 Three Paradigms of Deep Learning •  Deep Supervised Learning –  Paired input-output big training data for predicon –  Paired output serves as “teacher” for corresponding input •  Deep Reinforcement Learning –  Very weak “teacher” in the form of rewards; i.e. feedbacks (oen distant )from environments –  Q-learning computes “teaching signal” for training DNNs •  Deep Unsupervised Learning –  Unpaired input-output bigger training data for predicon - but no teacher/label per se for each input token –  Non-predicon tasks (clustering, dimensionality reducon, interpretaon understanding of data for transfer/multask learning …) 3 Two Types of Big Data for D

文档评论(0)

xingyuxiaxiang + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档