第七章:限失真编码2(英文).ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第七章:限失真编码2(英文)

§7.4: Limited loss source encoding theorem-1 Limited loss source encoding theorem Authentication Practical significance §7.4: Limited loss source encoding theorem-2 Limited loss source encoding theorem Assume R(D) is a distortion function of discrete non-memory steady source, and it has limited infidelity measure. For any D≥0,ε>0,δ>0 and any enough code length n,there will inevitably exist a kind of source encoding C,which code number is: M=exp{n[R(D)+ε]} its average infidelity after encoding: d(C)≤D+δ if used dual encoding,the unit of R(D) is bit,then the previous expression M can be : M=2{n[R(D)+ε]} §7.4: Limited loss source encoding theorem-3 Explanation: For any infidelity D≥0,if the code length n is enough,we can always find a kind of encoding C to make the info. transmit rate of each source signal be after encoding: R′=logM/n=R(D)+ε namely: R′≥R(D) its code average infidelity d(C)≤D。 With permitted distortion D, the least and available info. transmit rate is R(D) of the source. §7.4: Limited loss source encoding theorem-4 Authentication problem: 设有达到R(D)的试验信道p(v|u),要证明对于任意的R‘R(D)时,存在一种信息传输率为R’的信源编码,其平均失真度≤D+δ train of thought: 产生码书 选取编译码方法 计算失真度 method: 产生码书:在Vn空间随机抽取M=2nR’个随机序列v 编码方法:若存在与信源序列u构成失真典型序列对的序列v(ω),则编码u?v(ω),否则编码u?v(1) 译码:再现v(ω) 失真度计算:在所有随机码书和Un空间统计平均的基础上计算平均失真度 §7.4: Limited loss source encoding theorem-5 Several statements It is only a existence theorem, doesnt has construct methods. Problem existed: It is difficult to calculate the function R(D) of practical source It is difficult to get accurate mathematic description of the source statistic characteristics It is difficult to get the infidelity measure of the practical source R(D) itself is difficult to calculate Even if we have got R(D),we still research the best encoding method to get the limit value of R(D). §7.4: Limited loss source encoding theorem-6 Practical significance How to encoding? Example: Practical significance of R(D) Source function R(D) can be a

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档