- 1、本文档共64页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
单纯层次型结构神经网络模型的典型拓扑结构神经元分层排列,顺序连接。由输入层施加输入信息,通过中间各层,加权后传递到输出层后输出。每层的神经元只接受前一层神经元的输入,各神经元之间不存在反馈。感知器、BP神经网络和径向基函数神经网络都属于这种类型。第31页,共64页,星期日,2025年,2月5日层内有连接层次型结构神经网络中有的在同一层中的各神经元相互有连接,通过层内神经元的相互结合,可以实现同一层内神经元之间的横向抑制或兴奋机制,这样可以限制每层内能同时动作的神经元数,或者把每层内的神经元分为若干组,让每组作为一个整体来动作。第32页,共64页,星期日,2025年,2月5日输出层到输入层有连接反馈网络结构中,只在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。这种模式可用来存储某种模式序列,如神经认知机即属于此类,也可以用于动态时间序列过程的神经网络建模。第33页,共64页,星期日,2025年,2月5日全互连型结构局部互连型网络结构网络模型中,任意两个神经元之间都可能有相互连接的关系。其中,有的神经元之间是双向的,有的是单向的。Hopfield网络、Boltzman机网络属于这一类。第34页,共64页,星期日,2025年,2月5日神经网络的学习神经网络能够通过对样本的学习训练,不断改变网络的连接权值以及拓扑结构,以使网络的输出不断地接近期望的输出,这一过程称为神经网络的学习或训练,其本质是可变权值的动态调整。学习是改变各神经元连接权值的有效方法,也是体现人工神经网络智能特性最主要的标志。离开了学习,神经网络就失去了诱人的自适应、自组织能力。学习方法是人工神经网络研究中的核心问题第35页,共64页,星期日,2025年,2月5日有监督学习方式神经网络根据实际输出与期望输出的偏差,按照一定的准则调整各神经元连接的权系数,见下图。期望输出又称为导师信号,是评价学习的标准,故这种学习方式又称为有导师学习。特点:不能保证得到全局最优解,要求大量训练样本,收敛速度慢,对样本地表示次序变化比较敏感。第36页,共64页,星期日,2025年,2月5日无导师信号提供给网络,神经网络仅仅根据其输入调整连接权系数和阈值,此时,网络的学习评价标准隐含于内部。其结构见下图。这种学习方式主要完成聚类操作。无监督学习方式第37页,共64页,星期日,2025年,2月5日DonallHebb根据生理学中的条件反射机理,于1949年提出的神经元连接强度变化的规则:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强?为学习速率,oi、oj为神经元i和j的输出联想式学习—Hebb学习规则Hebb学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb学习规则的变形。神经网络的学习规则第38页,共64页,星期日,2025年,2月5日纠错式学习—Delta(δ)学习规则首先考虑一个简单的情况:设某神经网络的输出层中只有一个神经元i,给该神经网络加上输入,这样就产生了输出yi(n),称该输出为实际输出。对于所加上的输入,我们期望该神经网络的输出为d(n),称为期望输出或目标输出(样本对里面包含输入和期望输出)。实际输出与期望输出之间存在着误差,用e(n)表示:第39页,共64页,星期日,2025年,2月5日现在要调整权值,是误差信号e(n)减小到一个范围。为此,可设定代价函数或性能指数E(n):反复调整突触权值使代价函数达到最小或者使系统达到一个稳定状态(及突触权值稳定不变),就完成了该学习过程。该学习过程成为纠错学习,或Delta学习规则。wij表示神经元xj到xj学的突触权值,在学习步骤为n时对突触权值的调整为:学习速率参数则第40页,共64页,星期日,2025年,2月5日人工神经网络的仿真人工神经网络的运行一般分为训练和仿真两个阶段。训练的目的是为了从训练数据中提取隐含的知识和规律,并存储于网络中供仿真阶段使用。神经网络的仿真过程实质上是神经网络根据网络输入数据,通过数值计算得出相应网络输出的过程。通过仿真,可以及时了解当前神经网络的性能.从而决定是否对网络进行进一步的训练。第41页,共64页,星期日,2025年,2月5日反向传播模型及其网络结构反向传播模型也称B-P模型,是一种用于前向多层的反向传播学习算法。之所以称它是一种学习方法,是因
您可能关注的文档
最近下载
- 双向障碍患者的护理ppt.pptx
- 2025县城区小学数学教师选调进城试题含答案(8套考卷).docx VIP
- PE Lamda35紫外可见分光光度计使用说明.pdf VIP
- 高考语文百日冲刺名篇名句默写专项训练.docx VIP
- 09X700(下)智能建筑弱电工程设计与施工(下册).docx VIP
- 2025年小学生航空航天知识竞赛题库附答案 (共50题).docx VIP
- 火力发电厂燃料调运管理岗位规范.docx VIP
- 《Q∕CR9218-2015-铁路隧道监控量测技术规程》.pdf VIP
- 《Q∕CR9602-2015-高速铁路路基工程施工技术规程》.pdf VIP
- 无锡口岸医学媒介生物本底调查无锡口岸医学媒介生物本底调查.doc VIP
文档评论(0)