非线性系统模型参数估计算法模型.docVIP

非线性系统模型参数估计算法模型.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
非线性系统模型参数估计算法模型

非线性系统模型参数估计算法模型   摘 要: 针对非线性系统模型的多样性,提出了适用于多种非线性模型的基于粒子群优化算法的参数估计方法。 计算结果表明,粒子群优化算法是非线性系统模型参数估计的有效工具。   关键词: 粒子群优化算法; 非线性系统; 参数估计; 优化   中国分类号:TP301.6 文献标志码:A 文章编号:1006-8228(2012)04-34-02   An algorithm of parameter estimation of nonlinear system model   Wei Zhengfang, Qi Mingjun   (Hebi Occupation Technology College, Hebi, Henan 458030, China)   Abstract: Aiming at the diversity of nonlinear system model, it is proposed in this article a parameter estimation method based on particle group optimization algorithm that is applicable to a variety of nonlinear models. The result shows that the particle group optimization algorithm for parameter estimation of nonlinear system model is an effective tool.   Key words: particle group optimization algorithm; nonlinear system; parameter estimation; optimization   0 引言   非线性系统广泛地存在于人们的生产生活中,但是,目前我们对非线性系统的认识还不够深入,不能像线性系统那样,把所涉及的模型全部规范化,从而使辩识方法也规范化。非线性模型的表达方式相对比较复杂,目前还很少有人研究各种表达方式是否存在等效关系,因此,暂时还没有找到对所有非线性模型都适用的参数模型估计方法[1]。如果能找到一种不依赖于非线性模型的表达方式的参数估计方法,那么,也就找到了对一般非线性模型系统进行参数估计的方法[2]。   粒子群优化算法[3](Particle Swarm Optimaziton,简称PSO)是由Kennedy博士和Eberhart博士于1995年提出的一种基于群体智能的优化算法,它源于对鸟群群体运动行为的研究,即粒子群优化算法模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机有哪些信誉好的足球投注网站食物,在这个区域里只有一块食物,所有的鸟都不知道食物在那里,但是他们知道当前的位置离食物还有多远,那么找到食物的最优策略是什么呢?最简单有效的方法就是搜寻目前离食物最近的鸟的周围区域。粒子群优化算法从这种模型中得到启示并用于解决一些优化问题。粒子群优化算法中,每个优化问题的解都是有哪些信誉好的足球投注网站空间中的一只鸟,我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中有哪些信誉好的足球投注网站。粒子群优化算法将粒子解初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己,第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。其基本思想[4]是模拟自然界生物的群体行为来构造解的随机优化算法,即从一组初始解群开始迭代,逐步淘汰较差的解,产生更好的解,直到满足某种收敛指标,即得到了问题的最优解。假设在一个n维的目标有哪些信誉好的足球投注网站空间中,有m个粒子组成一个群落,其中第i个粒子在n维有哪些信誉好的足球投注网站空间中的位置表示为一个n维向量,每个粒子的位置代表一个潜在的解。设为粒子i的当前位置;为粒子i当前飞行的速度;为粒子i所经历的最好位置,也就是粒子i所经历过的具有最好适应值的位置,称为个体最优位置;为整个粒子群直至当前时刻有哪些信誉好的足球投注网站到的最优位置,称为全局最优位置。将带入目标函数计算出其适应值,根据适应值的大小可以衡量的优劣。每个粒子的位置和速度按下文中式⑶和⑷两个公式迭代求得。用j 表示粒子的第j维(j=1,2,…,n),i表示第i个粒子(i=1,2,…,m),t表示第t代,c1、c2为加速度常数,通常在0~2间取值,c1调节粒子向自身最

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档