- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
维纳维纳滤波实现模糊图像恢复
维纳滤波实现模糊图像恢复,则当输入某个随机信号时,
Y(n)= 式(1)
这里的输入
式(2)
式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即
式(3)
因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信号的真值与其估计值分别为s(n)和,而它们之间的误差
式(4)
则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然更为合理。而均方误差最小,也就是
式(5)
最小。利用最小均方误差作为最佳过滤准则比较方便,它不涉及概率的描述,而且以它导出的最佳线性系统对其它很广泛的一类准则而言是属最佳。
三、维纳滤波器的局限
维纳滤波复原法存在着几个实质性的局限。第一,最有标准是基于最小均方误差的且对所有误差等权处理,这个标准在数学上可以接受,但却是个不适合人眼的方式,原因在于人类对复原错误的感知在具有一致灰度和亮度的区域中更为严重,而对于出现在暗的和高梯度区域的误差敏感性差得多。第二,空间可变的退化不能用维纳滤波复原法复原,而这样的退化是常见的。第三,维纳滤波不能处理非平稳信号和噪声。
四、模拟仿真
运行结果
运行程序代码
clear;
I=imread(img_orignal.tif);
figure;
subplot(2,2,1);imshow(I);title(原图像);
[m,n]=size(I);F=fftshift(fft2(I));
k=0.005;
for u=1:m
for v=1:n
H(u,v)=exp((-k)*(((u-m/2)^2+(v-n/2)^2)^(5/6)));
end
end
G=F.*H;
I0=real(ifft2(fftshift(G)));
I1=imnoise(uint8(I0),gaussian,0,0.001)
subplot(2,2,2);imshow(uint8(I1));title(模糊退化且添加高斯噪声的图像);
F0=fftshift(fft2(I1));
K=0.1;
for u=1:m
for v=1:n
H(u,v)=exp(-k*(((u-m/2)^2+(v-n/2)^2)^(5/6)));
H0(u,v)=(abs(H(u,v)))^2;
H1(u,v)=H0(u,v)/(H(u,v)*(H0(u,v)+K));
end
end
F2=H1.*F0;
I2=ifft2(fftshift(F2));
subplot(2,2,3);imshow(uint8(I2));title(维纳滤波复原图);
五、结论与心得体会
通过这个实验,使我们更加深刻和具体的了解到了维纳滤波的原理,功能以及在图像处理方面的应用。维纳滤波器是对噪声背景下的信号进行估计,它是最小均方误差准则下的最佳线性滤波器。在实验的过程中,我发现采用维纳滤波复原可以得到比较好的效果,这个算法可以使估计的点扩散函数值更加接近它的真实值。但实现维纳滤波的要求是(输入过程是广义平稳的;(输入过程的统计特性是已知的。根据其他最佳准则的滤波器也有同样的要求。然而,由于输入过程取决与外界信号,干扰环境,这种环境的统计特性常常是未知的,变化的,因而这两个要求很难满足,这就促使人们研究自适应滤波器。
附:维纳滤波器的设计方法
维纳-霍夫方程
维纳滤波器的设计,实际上就是在最小均方误差条件下探索和确定滤波器的冲激函数h(n)或系统函数H(z),也就是求解维纳-霍夫方程的问题。
对于物理可实现系统,由(1)式得
式(6)
它实现的是将当前的及过去的诸输入值作相应的加权后的求和运算。故维纳滤波的设计则是确定均方误差
式(7)
最小意义下的冲激响应h(n)。
为便于得出矩阵表达式,我们将(6)式改写成
式(8)
式中
式(9)
因此
式(10)
为求得最小时的{hi},我们将(10)式对hi求偏导,得
式(11)
再令其为零,即
或, 式(12)
从而可以确定我们所需要的{hi}。
由于(12)式看出,满足正交性原理与满足均方误差最小的条件是一致的。由于,以及,将其代入(12)式可得
式(13)
若将(13)式与(15)式称为维纳-霍夫方程。为表述的方便,我们将维纳-霍夫方程写成矩阵形式,即
文档评论(0)