考虑环境效应的中国省际全要素能源效率分析.docVIP

考虑环境效应的中国省际全要素能源效率分析.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
考虑环境效应的中国省际全要素能源效率分析.doc

考虑环境效应的中国省际全要素能源效率分析   摘要:不同于当前大多数文献采用的数据包络分析(DEA),本文采用随机前沿分析(SFA)将能源利用的环境负效应――二氧化硫排放量作为一种成本要素纳入全要素能效分析框架,建立能效评价模型,对2000―2012年中国30个省级行政区域的能源效率状况进行比较研究,研究结果表明:中国全要素能源效率整体水平较低,且各省份、三大区域之间的全要素能效差异显著,但差距有逐步缩小的趋势,即存在收敛特征。   关键词:全要素能源效率 环境效应 参数 随机前沿分析   能源是人类生存和发展所必需的物质资料。随着经济发展和社会进步,人类对能源的需求量与日俱增。中国作为世界最大的发展中国家,正面临着日益严峻的能源问题:首先,能源供需失衡严重,能源需求不断增长,但能源供给方面电力短缺,石油大部分需要进口,能源对外依存度高;其次,技术落后导致能源利用效率低下;再次,能源消费量的增长和以煤为主的能源消费结构带来了严重的环境污染。在当前可持续发展的时代大背景下,面对能源安全与环境保护的双重压力,采取节能优先、提高能源利用效率的能源战略是当前最现实、最有效也是成本最低的途径。   能源利用效率一直是国内外学术界关注的热点问题,国际上对考虑环境效应的非参数效率模型方法和应用的研究已取得丰硕的成果,但对考虑环境效应的参数效率模型的研究还不多。因此,以能源利用效率与环境绩效评价为背景,系统研究考虑环境效应的参数能效模型、方法及应用的意义重大。   随机前沿分析(SFA)方法现已成为效率与生产率测度领域的主流方法之一,得到了广泛的应用。但是,SFA方法在能源、环境经济管理领域的应用还仅仅处于起步阶段,具有很好的研究前景。SFA方法的主要优点在于它能将纯粹的随机误差与非效率值分离,有效区分统计误差项和技术无效率误差项,可以避免不可控因素对生产无效率产生的影响,从而使得效率测度结果更接近于实际。   本文将能源利用过程中产生的环境污染引入全要素能效分析框架,基于SFA方法建立能效评价模型,实际测算2000―2012年我国各省区的考虑环境效应的全要素能效,并对其区域分布特征进行分析。   一、考虑环境效应的中国省域全要素能源效率的测算模型   (一)全要素能源效率测度方法   Hu和Wang(2006)基于全要素生产率框架,依据数据包络分析(DEA)方法创造性的提出了全要素能源效率(TFEE)的概念,并将其定义为在除能源要素投入外的其他要素(如资本、劳动)保持不变的前提下,按照最佳生产实践,一定产出所需的目标能源投入量与实际投入量的比值,从而有效弥补了传统单要素能源效率研究方法的缺陷,对后续研究产生了很大的启示作用。在全要素效率的分析中效率前沿的确定非常关键。法瑞尔(Farrell)1957年提出了两种可能的解决方案:一种是使用非参数估计的分段线性逼近的方法,另一种是使用参数估计的方法。前一种方案被查勒斯等人(Charnes,etal)采纳并最终演进成DEA方法;后一种方案被艾格勒等人(Aigner,etal)以及米尤森和范登布罗克(Meeusen and Van den Broeck)采用,并最终发展成SFA方法。   DEA和SFA是两种理念完全不同的建模思想。与DEA不同,SFA在本质上是一种使用极大似然估计的参数估计方法。和DEA相比,使用SFA确定效率前沿的缺点是必须要为效率前沿假定一种方程形式,这增加了使用SFA的风险。但SFA的优点也很明显,在确定效率前沿的时候它可以把随机因素的影响分离出来,这样它的最终结果相对来说就不易受到个别不准确的数据点的影响。   本文中用SFA创建的效率前沿可用下面的方程表达:   ln(GDPi)=β0+β1ln(Ki)+β2ln(Li)+β3ln(ECi)   +β4ln(SOi)+(vi-ui)   式中,GDPi是第i个地区的产出;Ki是第i个地区的资本存量;Li是第i个地区的劳动力投入;ECi是第i个地区生产所消耗的能源;SOi是第i个地区的二氧化硫排放量;β是待估参数;vi是随机变量,它表示一个地区社会生产中的随机因素,如自然灾害、突发事件等因素对地区能源消耗的影响,假定其服从标准正态分布N(0,σ2v);ui是非负的随机变量,表示一个地区的能源消耗偏离能效前沿的情况,假定其服从偏正态分布N+(μ,σ2u),且ui和vi相互独立。   则SFA效率前沿下的能效可以被定义为:   ■   能效指标值EE-SFAi位于0到1之间。EE-SFAi的计算相对来说较复杂,本文采用FRONT4.1软件计算。   (二)非期望产出的处理   现实经济中的生产存在负外部性,加之技术条件的限制,能源利用过程中不可避免会产生各种环境污染物,如二氧化碳、二

文档评论(0)

ganpeid + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档