一种快速模糊C均值聚类算法颅脑图像分割.docVIP

一种快速模糊C均值聚类算法颅脑图像分割.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一种快速模糊C均值聚类算法颅脑图像分割

一种快速模糊C均值聚类算法颅脑图像分割   摘要:颅脑图像分割的准确性对医生判断病变并作出正确的诊断至关重要。本文利用图像分割技术,采用一种快速模糊C均值聚类算法,实现了颅脑图像白质、灰质、脊髓液以及背景的自动分割。该算法在Visual C++2008软件开发平台上编程实现并与其他方法做了比较。实验表明该算法对于具有多峰直方图和边缘模糊的颅脑图像具有良好的实时性和分割效果,为接下来的颅脑的病变诊断等其他工作奠定了良好的基础。   关键词: 模糊C均值聚类;颅脑图像 ;自动分割;边缘模糊;   中图法分类号:TP391.4 文献标识码: J   Abstract:Using the technology of image segmentation,introduced a fast fuzzy c-means(FFCM) algorithm,with which the background,the white matter area,gray matter area and cerebrospinal fluid area could be divided automatically. On the Visual C++ 2008 software development platform,the algorithm was completed and compared with other algoithms.The results indicated that the algorithm was of goog real-time capacity and accuracy in segmentation of craniocerebral image that had multi-peaks histogram and edge blur .This work would lay the foundation a better pathological changes diagnosis.   Key words: Fuzzy c-means ; Craniocerebral ; Automatic threshold ; Edge blur   0引言   医学图像分割是医学图像处理领域里的一个经典难题,也是影响医学图像在临床上广泛应用的一个瓶颈问题,如三维重构、定量分析和可视化等[ 1]。分割的准确性对医生判断疾病的真实情况并做出正确的诊断至关重要。对于像磁共振颅脑图像这样复杂的医学图像,由于脑组织之间互相混叠在一起没有清晰的边界,不同个体之间的差异性较大,再加上在成像过程中磁场的不均匀性、部分容积效应以及噪声的影响,造成的图像内在的不确定性等,使分割问题显得更为复杂和困难。   图像分割是图像处理和计算机视觉的基本问题之一,是图像分析的关键步骤。虽然目前已经研究出很多图像分割的方法,但还没有一种有效的方法可以普遍适用于各种不同的图像。传统的聚类分析是一种硬划分,它把每个待辨识的对象严格划分到某类中,具有非此即彼的性质,而实际上大多数对象并没有严格的属性。   常见的磁共振颅脑图像具有以下特征:1)脑组织有脑白质、脑灰质和脑脊髓液组成2)脑白质、脑灰质和脑脊髓液的灰度值依次减小3)脊髓液一般被脑灰质所包围4)三个区域的边缘比较模糊,但区域内灰度的局部变化相对稳定5)由于成像是受各种热/电噪声干扰及成像设备的局限性,虽然软组织可以获得较高的对比度,但图像的信噪比较低[ 2-3]。如图1所示   由于各组织间灰度变化的相对稳定,使得颅脑图像的直方图出现了不太明显的多峰值。如图2所示:   针对目前常用的颅脑图像的特点,传统的阈值分割已经无法满足要求进行正确分割。模糊聚类技术非常适合处理事物内在的不确定性,而且对噪声不太敏感,它利用不太精确的方式来描述复杂系统,能有效地对边界不清晰的图像进行分割,本文以传统的模糊C均值聚类(FCM)为基础,探讨了一种快速C均值聚类(FFCM)的分割方法[4],实验证明本文介绍的FFCM在实时性及分割的准确性上具有优越性。   1 传统的FCM算法   传统的模糊C均值聚类(FCM)算法用于图像分割,是把图像的像素点看成数据集的样本点,把像素点的特征(对于灰度图像,即为灰度)看成样本点的特征,则图像的分割问题转换为数据集优化的问题。这样就可以将图像中属性相一致的像素进行模糊聚类后对每类像素标定,从而实现图像分割。   聚类分割的目标函数式:    (1-1)   其中: 为隶属度矩阵,V为聚类中心,x为像素的集合;c为聚类类别数;m为模糊加权指数,常取值为2,n为聚类空间的样本数;为第个像素到第类中心的距离,定义为    (1-2)   图像的优化分割就是通过迭代寻找聚类中心和隶属度值使

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档