women基于小波概率神经网络与数据融合结构损伤识别方法研究.docVIP

women基于小波概率神经网络与数据融合结构损伤识别方法研究.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
women基于小波概率神经网络与数据融合结构损伤识别方法研究

women基于小波概率神经网络与数据融合结构损伤识别方法研究   摘要:通过分析小波概率神经网络(WPNN)与数据融合技术在工程结构损伤识别中的应用原理,建立了基于小波概率神经网络和数据融合技术的模型。对悬臂板结构进行了数值模拟试验,运用损伤单元数据作为输入向量训练了WPNN与数据融合的损伤识别模型,并选取4个单元作为检验样本进行检验,检验的结果与数值试验分析吻合较好,表明,该方法在工程结构的损伤识别中有较好的应用价值。   关键词: 结构损伤;损伤识别;悬臂版;小波概率神经网络(WPNN);数据融合   Abstract: through the analysis of wavelet probabilistic neural network (WPNN) and data fusion technology in structural damage identification of the application of the principle, based on wavelet probabilistic neural network and data fusion technology model. To cantilever plate structure of numerical simulation test, the use of damage elements as input vector data training WPNN and data fusion of damage identification model, and selected four unit as a valid sample for inspection, testing results and a good agreement with the numerical test analysis, show that this method in engineering structure damage identification has good application.   Keywords: structural damage; Damage identification; Cantilever version; The probability of wavelet neural network (WPNN); Data fusion         中图分类号:TU973+.1 文献标识码:A文章编号:   1引言   当前,世界范围内建筑工业的重心正在从大规模新建转向新建与维修加固并举[1]。土木工程结构如房屋建筑、桥梁、海洋平台等在投入使用之后,由于地震、火灾、咫风等自然灾害或一长期作用的疲劳、腐蚀等原因而产生不同程度的损伤,结构损伤经过长期的累积必然会导致结构发生破坏或使用性能降低[2]。结构的损伤检测、诊断是土木工程结构经历自然灾害、长期作用后进行维修、加固的基础,是一项复杂的系统工程,其核心的问题是基于什么理论进行损伤的检测[3]。   在损伤识别以及其它的信息获取及处理过程中,信息的确定程度主要取决于选用传感器的种类、所选择的方法以及信息源本身[4]。进一步说,单一传感器获得的信息通常是不完整、不精确的。多传感器数据融合技术从多源??号中获取信息,减小了信息的不确定度,助于帮助制定决策。无损检测数据融合近几年发展很快。来自不同国家的很多人对它表现出极大的兴趣,他们已经提出了多种适用于无损检测数据融合的模型[5]。本文给出了一种新的基于小波概率神经网络(wavelet probabilistic neural network , WPNN)和数据融合的结构损伤检测方法模型,并给出了该模型在结构损伤识别中的应用。   2基于频率的结构损伤识别原理   运用试验测试的数据来确定结构系统运动方程中的参数叫做参数识别。参数识别的典型过程包括在结构系统的模态试验中测量由于外部激励作用下的结构响应;从响应的数据中直接地或通过数据处理技术确定系统的动力特性,诸如自振动频率和振型。结构的频率相对振型来说更容易较准确测量,而且能够反映结构整体特征,使其成为结构损伤识别中的重要特征参数。由于系统的自振动频率和振型是系统参数如质量和刚度的函数,所以可以将实验得到的结构动力特性与数学模型预测的结构动力特性进行比较从而确定系统参数[6]。结构损伤探测的基本方法正是基于以上的基本概念而产生的。   当不考虑阻尼时,结构振动的特征值方程为    (1)   其中矩阵 、 分别表示离散的质量矩阵、刚度分布, 与 分别是结构第i阶固有频率和正则化振型向量。设损伤使结构刚度矩阵、质量矩阵、频率及振型向量的变化分别

文档评论(0)

189****7685 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档