HMM在生物信息中的应用2.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
HMMs及其应用 Hidden Markov Models Its Application Lecture # 11 Four Basic Problems for HMMs Determine the structure/topology of the HMM—states and transitions Determine the values of the model parameters—emission and transition probabilities (the learning problem). That is, how to adjust the model parameters to maximize P(O | m)? Given an observation sequence O = O1O2O3…Ot, and a model m = (T, E, ?), how to evaluate the probability of this sequence given the model (the estimation problem). That is, how to efficiently compute P(O | m)? Given an observation sequence O and a model m, how to find the most likely path through the model for the sequence (the decoding problem). That is, how to choose a corresponding state sequence Q = q1q2q3…qt which is optimal in some meaningful sense? About the Estimation Problem: Determining how probable an observed sequence is, given a model Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=? Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=P(a1)P(a2| a1)P(a3 | a1 a2)...P(an|a1... an-1) P(S)=P(a1)P(a2| a1)P(a3 | a2)...P(an|an-1) P(S)=P(a1) ? P(ai|ai-1) Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=P(a1)P(a2| a1)P(a3 | a1 a2)...P(an|a1... an-1) P(S)=P(a1)P(a2| a1)P(a3 | a2)...P(an|an-1) P(S)=P(a1) ? P(ai|ai-1) HMMs: P(S) =? Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=P(a1)P(a2| a1)P(a3 | a1 a2)...P(an|a1... an-1) P(S)=P(a1)P(a2| a1)P(a3 | a2)...P(an|an-1) P(S)=P(a1) ? P(ai|ai-1) HMMs: P(S) depends on states passed thru Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=P(a1)P(a2| a1)P(a3 | a1 a2)...P(an|a1... an-1) P(S)=P(a1)P(a2| a1)P(a3 | a2)...P(an|an-1) P(S)=P(a1) ? P(ai|ai-1) HMMs: P(S) depends on states passed thru if known: (states= s1, s2... sn) P(S) = ? Basic Mathematics Markov chains: prob. of a sequence: S=a1a2...an P(S)=P(a1)P(a2| a1)P(a3 | a1 a2)...P(an|a1... an-1) P(S)=P(a1)P(a2| a1)P(a3 | a2)...P(an|an-1) P

文档评论(0)

wxc6688 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档