高等电力电子技术教学课件作者张兴第一章节课件幻灯片.pptVIP

高等电力电子技术教学课件作者张兴第一章节课件幻灯片.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
1.4.2 IGCT工作原理 IGCT工作原理主要取决于GCT的工作过程。总体说来,GCT的开通机理和GTO完全一样,但关断过程有很大的差别,其等效原理图如图1-14所示 。 当GCT工作在导通状态时,是一个晶闸管一样的正反馈开关,携带电流能力强而且通态压降低,导通机理与GTO完全一致。当器件需要关断时,门极P沟道MOSFET先导通,部分主电流从阴极向门极换相,然后阴极N沟道MOSFET关断,使主电流完全通过门极流出,此过程转换时间约为1us,在关断状态下,GCT门极和在IGCT关断过程中,GCT的门极和阴极之间的PN结提前进入反向偏置,并有效的退出工作,使整个器件成为一个无接触基区的晶体管,如晶体管一样均匀关断。与GTO完全不同,它没有载流子收索效应。 1.4.2 IGCT工作原理 GCT的开通和关断示意图如图1-15所示,GCT关断时的电压、电流波形如图1-16所示。 图1-15 GCT的开通和关断示意图 图1-16 IGCT无吸收电路的关断波形 1.4.2 IGCT工作原理 1.5 电力电子器件新材料 电力半导体技术主要从两方面进行研究: 传统器件结构的不断优化与改进 宽禁带半导体材料的应用 其中最有意义的是碳化硅、氮化镓和氧化锌,这些材料的共同特点是它们的禁带宽度在3.3到3.5电子伏之间, 是硅的3倍, 比砷化镓的禁带宽度也大了两倍以上,因而它们一般具有高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频及大功率器件。 1.5.1 碳化硅材料和碳化硅电力电子器件 碳化硅作为典型的宽禁带半导体之一,被人称成为第三代半导体,尤其在制造电力电子器件方面具有广阔的应用前景。用碳化硅做成的器件,其最高工作温度有可能超过600摄氏度;碳化硅的击穿电场强度是硅的8倍,其电子饱和漂移速度是硅的2倍,这更有利于提高器件的工作频率,因而碳化硅器件的工作频率可达硅器件的10倍以上;此外,碳化硅还是本世纪初唯一可以用热氧化法生成高品质本体氧化物的化合物半导体,这使其也可以像硅一样用来制造MOSFET和IGBT这样含有MOS结构的器件。 碳化硅材料已被证明是电力电子器件的未来重要发展方向。 碳化硅肖特基势垒二极管的研发水平已达到高压器件阻断电压超过20kV,大电流器件通态电流130A、阻断电压高达5kV的水平,并且在所有碳化硅器件中率先实现实用化,并投放市场。 碳化硅肖特基二极管结构示意图 1.5.1 碳化硅材料和碳化硅电力电子器件 碳化硅功率MOSFET是研究最深入的场效应器件,在结构上与硅材料功率MOSFET没有太大区别,其优势在于够兼顾阻断电压和通态电阻。 碳化硅MOSFET结构示意图 1.5.1 碳化硅材料和碳化硅电力电子器件 碳化硅MESFET由于没有SiC-SiO2界面,其沟道载流子的等效迁移率较高,因而将碳化硅MESFET作为微波器件来开发。 碳化硅MESFET结构示意图 1.5.1 碳化硅材料和碳化硅电力电子器件 结型场效应晶体管(JFET)因为不需要制作栅氧化层而受到碳化硅场效应器件开发者们的重视。近些年,SiC型JFET的研发水平达到2000V左右。 碳化硅JFET结构示意图 1.5.1 碳化硅材料和碳化硅电力电子器件 碳化硅IGBT的优越性只在阻断电压高于10000伏情况下才能突显出来。近年来,关于碳化硅高压IGBT的研发工作已有较大进展。所遇到的主要困难是:p沟道IGBT的源电极接触电阻偏高, n沟道IGBT需要用p型碳化硅材料作衬底,而p+碳化硅衬底能做到的最低电阻却比MOSFET的电阻总值还高。因此,碳化硅IGBT研发工作的实质性进展,还有待于材料和工艺技术的进一步改善。 由于碳化硅在晶体生长过程中形成微管缺陷的问题至今尚未很好解决,制造大电流碳化硅分立器件所需要的大尺寸晶片还难以得到。因此,功率模块成为人们为满足大电流应用的需要而关注的对象。 1.5.1 碳化硅材料和碳化硅电力电子器件 1.5.2砷化镓器件 砷化镓是继硅之后最成熟的半导体材料,已经制造出直径超过75mm的高质量单晶。作为一种用于电子器件制造的初始材料,砷化镓的典型价格比硅大约贵7倍。与硅相比,其器件制造所需的操作更复杂,所以比较昂贵。在砷化镓中,所有的受主杂质都有很高的扩散系数,这使pn结在本质上就不稳定,也使我们不能采用多次扩散的工艺,因此,砷化镓器件通常是做成单极的,而不是双极的。与相应的硅器件相比,尽管一些砷化镓器件需要的芯片面积较小,但材料可能仍然较贵,因此要想使用这种材料获得好处时,其性能的重要方面要明显优于可供比较的硅器件。 1.5.3金刚石电力电子器件 作为制造功率器件而言,

文档评论(0)

精品课件 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档