经济数学微积分函数的微分推荐.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
经济数学微积分函数的微分推荐

导数与微分 一、微分的定义(differential) 3. 可微(differentiable)的条件 二、微分的几何意义 三、基本初等函数的微分公式 与微分运算法则 四、微分在近似计算中的应用 五、小结 思考题 设序列GDPD1的模型形式为: 有时,在用回归法时,也可加入常数项。 本例中加入常数项的回归为: 模型检验 用建立的AR(2)模型对中国支出法GDP进行外推预测。 对2001年中国支出法GDP的预测结果(亿元) 预测值 实际值 误差 模型1 95469 95933 -0.48% 模型3 97160 95933 1.28% 由于中国人均居民消费(CPC)与人均国内生产总值(GDPPC)这两时间序列是非平稳的,因此不宜直接建立它们的因果关系回归方程。 但它们都是I(2)时间序列,因此可以建立它们的ARIMA(p,d,q)模型。 当然,还可观察到自相关函数在滞后4、5、8时有大于0.2的函数值,因此,可考虑在模型中增加MA(4)、MA(5)、MA(8)。不同模型的回归结果列于表9.2.5。 最后,给出通过模型3的外推预测。 表9.2.6列出了采用模型3对中国居民人均居民消费水平的2期外推预测。 为了对照,表中也同时列出了采用§2.10的模型的预测结果。 §9.3 协整与误差修正模型 一、长期均衡关系与协整 二、协整检验 三、误差修正模型 一、长期均衡关系与协整 1. 问题的提出 经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中, 因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的。 经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。 假设X与Y间的长期“均衡关系”由式描述: 实际情况往往并非如此 如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则Y的变化往往会比第一种情形下Y的变化?Yt大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小于第一种情形下的?Yt 。 式Yt=?0+?1Xt+?t中的随机扰动项也被称为非均衡误差(disequilibrium error),它是变量X与Y的一个线性组合: 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量: ?=(?1,?2,…,?k),使得: Zt= ?XT ~ I(d-b) 其中,b0,X=(X1t,X2t,…,Xkt)T,则认为序列{X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b),?为协整向量(cointegrated vector)。 三个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。 (d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。 例如:前面提到的中国CPC和GDPPC,它们各自都是2阶单整,并且将会看到,它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型: 二、协整检验 1.两变量的Engle-Granger检验 从这里已看到,非稳定的时间序列,它们的线性组合也可能成为平稳的。 假设Yt=?0+?1Xt+?t式中的X与Y是I(1)序列,如果该式所表述的它们间的长期均衡关系成立的话,则意味着由非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称变量X与Y是协整的(cointegrated)。 3.协整 在中国居民人均消

文档评论(0)

feixiang2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档