基于自适应人工神经网络的无刷直流电机换相转矩波动抑制新方法.pdf

基于自适应人工神经网络的无刷直流电机换相转矩波动抑制新方法.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于自适应人工神经网络的无刷直流电机换相转矩波动抑制新方法

22 1 Vol. 22 No. 1 Jan. 2002 2002 1 Proceedings of t he CSEE 2002 Chin. Soc. for Elec. Eng . (2002) 01005 05 夏长亮, 文 德, 王 娟 ( 天津大学电气自动化与能源工程学院, 天津300072) A NEW APPROACH OF MINIMIZING COMMUTATION TORQUE RIPPLE FOR BRUSHLESS DC MOTOR BASED ON ADAPTIVE ANN XIA Changliang, WEN De, WANG Juan ( School of Electrical Engineering and Energy , T ianjin U niversity, Tianjin 300072, China) ABSTRACT: In this paper, t he principle of commutation torque , ripple ( CTR) for brushless DC motor is analyzed, and a new approach of minimizing CT R is presented, which is based on adaptive artificial neural netw ork ( ANN) control. Tw o three layer forw ard artificial neural networks are trained both in off : ; ; line and in online ways, and the weights in netw orks are up : TM383 : A dated using the error back propagation ( BP) algorithm. One of t he networks is used to estimate the commutation parameters of 1 t he motor online. T he other is used to regulate the terminal voltages using the parameters estimated by the former network during commutation. In this way, the w hole model can be con , , sidered as a voltage selftuning regulator ( STR) . Through reg , ulating the terminal voltages of motor, the ST R makes the ris ing ratio and dropping ratio of the phase currents be approxi mate in order to keep the amplitude of the total current in the circuit constant , so as to minimize CTR. This approach is un , necessary to know the accurate system parameters, and can [ 1,2] Carlson modify the model adaptively w hile parameters are changed. The [ 1]

文档评论(0)

magui + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8140007116000003

1亿VIP精品文档

相关文档