贝叶斯分类实验.DOCVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
贝叶斯分类实验

实验一:贝叶斯分类实验 学时:4学时 实验目的:设计简单的线性分类器,了解模式识别的基本方法。掌握利用贝叶斯公式进行设计分类器的方法。 实验内容: (1) 有两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如20个)样本点,假设每类样本点服从二维正态分布,自己随机给出具体数据,计算每类数据的均值点,并且把两个均值点连成一线段,用垂直平分该线段的直线作为分类边界。再根据该分类边界对一随机给出的样本判别类别。画出如下图形。 提示: 1.可以如下产生第一类数据: % x是第一类数据,每一行代表一个样本(两个特征) x1(:,1) = normrnd(10,4,20,1);生成一组(20个)服从正态分布的随机数。 ;参数意义:第一、二参数分别表示均值及均方差, ;第三、四参数表示生成的是20行1列的向量 x1(:,2) = normrnd(12,4,20,1); 2.可假设分类边界为 kx-y+b=0,根据垂直平分的条件计算出k和b。 3.如果新的样本点代入分类边界方程的值的符号和第一类样本均值代入分类边界方程的符号相同,则是判断为第一类。 (2) 根据贝叶斯公式,给出在类条件概率密度为正态分布时具体的判别函数表达式,用此判别函数设计分类器。数据随机生成,比如生成两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如20个)样本点,假设每类样本点服从二维正态分布,随机生成具体数据,然后估计每类的均值与协方差,在两类协方差相同的情况下求出分类边界。先验概率自己给定,比如都为0.5。如果可能,画出在两类协方差不相同的情况下的分类边界。画出如下图形。 提示: 1.可以如下产生第一类数据: % x是第一类数据,每一列代表一个样本(两个特征) x1(1,:) = normrnd(10,4,1,20); x1(2,:) = normrnd(12,4,1,20); 2.均值的估计为,协方差的估计为。 最小错误率贝叶斯判别函数为: (1)两类协方差相同的情况下的分类边界为: , 其中,, 若两类先验概率相等,则 (2)两类协方差不相同的情况下的判别函数为: 则,两类问题的决策面方程为 即, 《统计模式识别》实验指导书 第2页

文档评论(0)

2105194781 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档