模式识别技术在贷款风险分类中适用性分析.docVIP

模式识别技术在贷款风险分类中适用性分析.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
模式识别技术在贷款风险分类中适用性分析

模式识别技术在贷款风险分类中适用性分析   [摘要] 贷款风险分类是一个对借款人现金流量、财务指标及其非财务指标进行综合评价的过程。本文把贷款风险分类看作是一个模式识别问题,在此框架下,就统计模式识别领域中必威体育精装版使用的神经网络方法、分类树法、以及支持向量机三种方法的建模思想、适用性进行分析,从而对我国贷款风险分类提供一些启示。   [关键词] 模式识别 风险分类 适用性      一、引言      贷款风险分类,就是根据借款人的当前经营情况和违约迹象来判断其按时还款的可能性并给予风险等级评价,是银行综合了借款人财务、非财务因素,对贷款未来安全收回可能性的评价。如何判断借款人的每个因素对贷款偿还的影响程度,以及如何将上述各种因素定性和定量分析归纳汇总,作出全面科学的风险评定是贷款风险分类操作的难点和关键。   在现代信用风险度量模型出现以前,测度信贷信用风险的方法主要有:专家制度法、评级法和信用评分法。近年来,一些大的金融机构相继构建了比较规范的、有重大影响的四大信用风险度量模型:JP 摩根的Credit Metrics 方法;KMV公司的KMV 模型;CSFP(Credit Suisse Financial Products) 的Credit Risk + 方法;麦肯锡公司的信用组合观点模型(Credit portfolio View)。这四大信用风险度量模型对中国银行业都有一定的借鉴意义。模型最大的问题是任何一个模型都没有全面考虑到借款人的道德风险,还有借款人的具体情况,如银行合同、贷款合同、担保能力、借款期限等,而且由于经济制度、金融发展水平等方面的差异,因此,借用西方信用风险模型应慎重,我国应用这些大型量化模型的条件还不成熟。   本文把贷款风险分类看作是一个模式识别问题,在此框架下,就统计模式识别领域中必威体育精装版使用的神经网络方法、分类树法、以及支持向量机三种方法的建模思想、适用性进行比较,并给出有关结论。      二、贷款风险分类是一个模式识别问题      所谓模式识别,就是用计算机的方法来实现人对各种事物或现象的分析、描述、判断和识别。目前我国实行的贷款风险五级分类法(简称风险分类),它是根据贷款对象的第一还款来??与第二还款来源共同特征(财务指标)或属性(非财务指标)进行识别判断而进行分类的,其核心在于它以借款人的偿还能力作为分类标志。      贷款风险分类的模式识别系统的精度及其正确性,主要取决于(1.3)式中的一些参数的估计的精度。训练时如果输入模式样本的类别信息是已知的,这时可以用“有监督”的模式识别技术,让识别系统执行一个合适的学习训练过程,把系统“教”成可使用各种适应修改技术再去识别模式。如果采集到样本模式是未知类别的,这时可用“无监督的模式识别技术,即必须通过系统的学习过程去得到其所属的范畴。      三、模式识别技术的建模思路及其适用性分析      目前用于统计模式识别的方法很多,主要有判别分析法、回归分析法、人工智能(专家系统)、神经网络、决策树法、K近邻法、支持向量机等。本文仅就目前最为流行的人工神经网络、决策树法、支持向量机三种非参数模式识别方法建模思路、适用性进行比较分析。   1.神经网络模型(ANN)   (1)建模思路   人工神经网络(Artficial Neural Networks ANN )是一种具有模式识别能力,自组织、自适应,自学习特点的计算方法。神经网络模型建模思路是,首先找出影响分类的一组因素,作为ANN的输入,然后通过有导师或无导师的训练拟合形成ANN风险分析模型。对于新的样本输入(即一组影响因素值),该模型可产生贷款风险的判别。   (2)适用性分析   神经网络的适用性首先表现为分类的准确性比较高。特别是在测试数据为非线性关系的情况下,尤其如此;其次是神经网络有较强的适应训练样本变化的能力,当训练样本增加新的数据时,能够记忆原有的知识,根据新增的数据作恰当的调整,使之表示的映射关系能够更好的刻画新样本所含的信息。这一点不仅使得神经网络具有较强的适应样本变化的能力,还使它具有动态刻画映射关系能力,也克服了线性判别分析方法的静态特点;再次是其具有鲁棒性。神经网络对于样本的分布、协方差等没有要求,对样本中存在的噪音数据、偏差数据不敏感。监管部门在面对众多监管对象银行时, 可以根据其报表中的监管指标与监控指标的输出结果,迅速、准确地判断商业银行的经营状况,就可以辅助以现场检查的手段,对商业银行进行适当、适时的干预。   神经网络方法的主要缺点一是对样本的依赖性过强,对样本提出了很高的要求。因为它很少有人的主观判断因素的介入;二是解释功能差。它仅能给出一个判断结果,而不能告诉你为什么;三是在神经网络方法中输入特征变量的确

文档评论(0)

189****7685 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档