超声波成像技术在压力容器检验中应用.docVIP

超声波成像技术在压力容器检验中应用.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
超声波成像技术在压力容器检验中应用

超声波成像技术在压力容器检验中应用   摘 要:超声波成像技术可以直观的反映检测缺陷的实际形态,并可以利用计算机软件来完成对其定性与定量的描述,可以在压力容器检测中获得较好的效果。   关键词:超声波检测;衍射成像;缺陷检测   中图分类号:TG115.2 文献标识码:A 文章编号:1000-8136(2012)03-0054-02      1 超声波检测的基本原理   新型的超声波技术TOFD是一种可以精确测量部件内部缺陷与平面曲线在壁厚方向上的高度的技术,其操作简单直观,与以往的超声波技术不同。目前采用的TOFD技术是利用固体中声波传递最快的纵波在缺陷端实现衍射来进行测量的,如在焊接缝的两侧利用一对尺寸、频率、角度相同的纵波斜向探头并使其位置对称,一个作为发射端、一个则为接收端。发射端的纵波从侧面进入到被检测的焊缝中。无缺陷的时候接收端接收到沿着时间表面传播的侧向波与底面发射波。而存在缺陷的部位在上述两个波之外还会接收到缺陷位置所产生的衍射波。这就是超声波衍射检测的基本原理。   2 超声波成像技术在压力容器检测过程   2.1 检测过程   2.1.1 检测设备准备   采用TOFD的检测需要利用计算机、软件系统、探头与之间等几个部分组成,为了适应压力容器的检测,需要根据检验对象的材料、厚度等进行组合与应用。具体需要注意以下几个方面:探头型号选择,如对75 mm以下容器壁进行检测需要的探头为单探头,检测铁素体钢材时应根据相关的规范进行选择,而对奥氏体或者其他高衰减的材料应降低探头的频率或者增加晶片的大小。如对75 mm以上的容器壁进行检测一定要采用组合的方式进行扫描,其组合的方式应按照相关的规范选择;探头距离选择:在检测前应对所选用的探头的距离进行调试,以此获得最佳的检测效果,超声波检测的最佳探头距离应按照图1所示,并利用公式PCS=2dtgθ进行计算,其中d是缺陷深度;θ则是探头的角度。   图1 检测探头间距选择   2.1.2 仪器的校对   增益性校对,采用超声波衍射检测虽然不是在波幅的基础上进行检测和定量分析,但是增益对仪器的灵敏度影响较大,因此必须在具有合适的增益保证???完成,才能在扫描中发现缺陷。多数检测中,单个超声波探头组的增益设置是将表面的波高达到满屏的40%~90%,以此保证测量的效果。   对声速和探头角度的校对,声波在不同材料中传递的速度不同,因此检测前应对声波的速度进行校对,另外探头的楔块在多次使用后会产生磨损,探头的角度会发生微量改变,检测前必须对此进行校正,声波速度与探头角度可以通过横通孔来完成调整。   2.2 检测软件与硬件配置   在开始进行检测前应对软件与硬件设备进行检查,主要是调整其主要参数使之符合检测需求,如:采样率、扫描间距、速度等。采样率选择在50 mm内时应选择A-扫描信号之间最大采样间隔通常为1 mm;对于壁厚较大的容器,A-扫描信号之间最大的采用间隔可以为2 mm;扫描距离设定,按照被检容器的尺寸和超速设备的内存来设定检测是扫描的距离;扫描速度设定,设定合理的扫描速度主要是在保证高效的前提下控制检测的质量,保证不丢失数据。扫描速度应根据耦合能力和电子系统的数据存储能力而定,通常B-扫描数据丢失不会超过整个扫描检查量的5%,而且不要出现连续丢失的情况。   2.3 检测操作过程   将发射探头和接收探头分别放置在压力容器焊缝的两侧,首先沿着焊缝进行B-扫描,如焊缝、热影响区没有缺陷的时候,会观察到2个超声波信号,一个是声波在表面传播的脉冲信号;一个是时间底部反射的声波信号,两个脉冲信号应位于发射探头和接收探头之间的最短与最长声波程内。两个信号是检测的基本参考信号,如果焊缝中存在缺陷,超声波的大部分能量就会在缺陷的表面出现反射,而一部分能量则会在缺陷的上下端产生衍射效应,且会被接收端检测出来。因为B-扫描不能确定缺陷距离探头的中心位置,因此在第一次扫描后应针对存在缺陷的位置进行二次扫描,此次应垂直与焊缝的方向进行D-扫描,完成后保存资料为成像做准备。   3 超声波成像技术的应用   利用超声波进行检测结束后就会形成一个图形,见图2,并可以获得相应的形状、尺寸等数据,在对成像进行分析的时候主要分为两步。   第一步:根据图像对缺陷进行的定性分析,即确定其性质,依据的是图像的形状和密集程度等;第二步:根据图像对缺陷进行定量分析,主要包括尺寸、位置等参数信息,缺陷的高度则是利用其上下端的衍射信号的时间差进行计算获得,应注意的是上下端的回波位置是相反的,缺陷长度则是利用成像获得,深度是利用表面波与缺陷上端的衍射波的时间差计算获得,缺陷距离探头中心线的距离利用D-扫描求出。至此就可对压力容器中所存在的缺陷进行全面的定量分析,从而指导选

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档