- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
经济数学微积分导数与微分复习资料推荐
第二章习题课 三、实际经济问题中的异方差性 例4.1.1:截面资料下研究居民家庭的储蓄行为: Yi=?0+?1Xi+?i Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入。 一般情况下,居民收入服从正态分布:中等收入组人数多,两端收入组人数少。而人数多的组平均数的误差小,人数少的组平均数的误差大。 所以样本观测值的观测误差随着解释变量观测值的不同而不同,往往引起异方差性。 每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。 这时,随机误差项的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。 四、异方差性的后果 五、异方差性的检验 检验思路: 4. 怀特(White)检验 怀特检验不需要排序,且适合任何形式的异方差。 怀特检验的基本思想与步骤(以二元为例): 六、异方差的修正 模型检验出存在异方差性,可用加权最小二乘法(Weighted Least Squares, WLS)进行估计。 七、案例——中国农村居民人均消费函数 2. 变量的显著性检验失去意义 变量的显著性检验中,构造了t统计量 其他检验也是如此。 3. 模型的预测失效 一方面,由于上述后果,使得模型不具有良好的统计性质; 所以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。 由于异方差性就是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么: 检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。 问题在于用什么来表示随机误差项的方差 一般的处理方法: 几种异方差的检验方法: 1. 图示法 (1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中) 看是否形成一斜率为零的直线 2. 帕克(Park)检验与戈里瑟(Gleiser)检验 基本思想: 偿试建立方程: 或 选择关于变量X的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。 如: 帕克检验常用的函数形式: 或 若?在统计上是显著的,表明存在异方差性。 3. 戈德菲尔德-匡特(Goldfeld-Quandt)检验 G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。 G-Q检验的思想: 先将样本一分为二,对子样①和子样②分别作回归,然后利用两个子样的残差平方和之比构造统计量进行异方差检验。 由于该统计量服从F分布,因此假如存在递增的异方差,则F远大于1;反之就会等于1(同方差)、或小于1(递减方差)。 G-Q检验的步骤: ①将n对样本观察值(Xi,Yi)按观察值Xi的大小排队; ②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2; ③对每个子样分别进行OLS回归,并计算各自的残差平方和; ④在同方差性假定下,构造如下满足F分布的统计量 ⑤给定显著性水平?,确定临界值F?(v1,v2), 若F F?(v1,v2), 则拒绝同方差性假设,表明存在异方差。 当然,还可根据两个残差平方和对应的子样的顺序判断是递增型异方差还是递减异型方差。 然后做如下辅助回归 可以证明,在同方差假设下: (*) R2为(*)的可决系数,h为(*)式解释变量的个数, 表示渐近服从某分布。 注意: 辅助回归仍是检验与解释变量可能的组合的显著性,因此,辅助回归方程中还可引入解释变量的更高次方。 如果存在异方差性,则表明确与解释变量的某种组合有显著的相关性,这时往往显示出有较高的可决系数以及某一参数的t检验值较大。 当然,在多元回归中,由于辅助回归方程中可能有太多解释变量,从而使自由度减少,有时可去掉交叉项。 加权最小二乘法的基本思想: 加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数。 例如,如果对一多元模型,经检验知: 在采用OLS方法时: 对较小的残差平方ei2赋予较大的权数; 对较大的残差平方ei2赋予较小的权数。 新模型中,存在 即满足同方差
文档评论(0)