- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* Summary Introduction Buffon’s needle Computing π Numerical Integration * Numerical Probabilistic Algorithms Numerical probabilistic algorithms are one type of random algorithm that always yields approximate answers to numerical problems. Given an instance, could return different answers Typically the longer you let the algorithm run, the better the answer. Range/Confidence interval. * 1 Buffon’s needle 18th century, George Louis Leclerc, compte de Buffon. Probability that a needle will fall across a crack is 1/π (each drop is independent to the others) Plank width = w Needle length L = w/2 * Approximate π : n/k as an estimator of π Approximate w : w ≥ L , w is estimated by * How fast this ‘algorithm’ converge? Convergence analysis Estimate π : Xi each needle Xi =1 if i-th needle fall across a crack, 0 otherwise. * X estimate of 1/π after dropping n needles. * X is normal distributed * With n needles, estimate π will have less precision than estimate 1/π by one digit. when * Given n , the value of π is between and Example : How many n to estimate π within 0.01 of the correct value with the confidence 99% ? precision 0.001 (one more digit than estimate 1/π) n 1.44 million with probability at least p * Computing π The number of randomly thrown points that fall in the circle area k divided by the number of total points in the square area n is approximately equal to π divided by 4. Namely, k/n=π/4. So π=4k/n. * So, we can compute π by generating two numbers for x and y component of a simulated throw. Then we can figure out by using Pythagorean theorem if this throw is inside or outside the circle. We count this hits, and after doing this thousands of times (or more), we can get an estimate value of π. Accuracy of the estimate depends on the number of “throws” * An example code would be (assuming we set the r= 1): Computingπ(n) 1 k ← 0 2 for i←1 to n do 2 x ← Randomf(0,1) 3 y ← Randomf(0,1) 4 d ← x*x + y*y 6
文档评论(0)