高光实验报告.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高光实验报告

高等光学(实验报告)实验一数字干涉测量方法及实验一、实验目的:1.了解激光干涉的近代方法??数字干涉技术的原理和方法2.掌握干涉的实时检测技术3.了解数字干涉方法的特点及应用场合二、实验原理随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合,产生了一种新的位相检测技术——数字干涉技术,这是一种位相的实时检测技术。这种方法不仅能实现干涉条纹的实时提取,而且可以利用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及随机噪声,使干涉技术实现λ/100的精度,这是目前干涉仪精度最高的近代方法。其原理如下图所示:图中的实验系统仍采用T-G干涉仪,但参考镜2由压电陶瓷PZT驱动,产生位移。此位移的频率与移动量由计算机控制。设参考镜的瞬时位移为li,被测表面的形貌(面形)为w(x,y),则参考光路和测试光路可分别用下式表示:(1)(2)式中a,b为光振幅常数。参考光与测试光相干产生干涉条纹,其瞬时光强由式1与式2,可得:(3)式中是干涉条纹的对比度。式3说明,干涉场中任意一点的光强都是的余弦函数。由于随时间变化,因此,式3的光强是一个时间周期函数,可用傅里叶级数展开。设r=1,则式中:,由三角函数的正交性,可求出Fourier级数的各个系数,从而求得被测波面,由下式给出:式中为进一步降低噪声,提高测量精度,可用P个周期进行驱动扫描,测量数据作累加平均,即式中说明孔径内任意一点的位相可由该点上的n×p个光强的采样值计算出来,因此,可获得整个孔径上的位相。除实现自动检测外,还可以测定被测件的三维形貌。三、实验光路激光器1发出的激光经衰减器2(用于调节激光强度)后由二个定向小孔3,5引导,经反射镜6,7进入扩束准直物镜8,10(即图1中的L1),由分光镜14(即图1中BS)分成二束光,分别由反射镜16(即图1中的),18()反射形成干涉条纹并经成像物镜20(即图1中)将条纹成于CMOS 23上(即D),这样在计算机屏上就可看到干涉条纹,实现微位移的测量。四、实验步骤1.开机,激光器1迅速起辉,待光强稳定;a) 打开驱动电源开关;检查CMOS23上电信号灯亮否;b) 按实验光路图布置好光路,扩束激光;2.在组合工作台16、18上分别装平面反射镜,调节工作台16、18上的微调旋钮,使二路反射光在成像透镜后焦面上会聚于一点。3.调节可调光阑22孔径位置和大小,使主光线通过光阑中心小孔,达到滤除光路中产生的寄生杂散光的目的。4.打开本实验仪配套软件“Csylaser”,然后调节光路使得两光束产生干涉,产生清晰地干涉条纹,并在软件显示屏上显示。五、实验结果及分析在软件“Csylaser”中,“定位类别”选择“A-位移定位测试”,点“活动图像”观测实时干涉条纹,在干涉情况好的情况下冻结图像,如下图所示,干涉条纹清晰。六、思考题:1.试分析决定数字干涉仪测量准确性的因素和提高测量准确性的主要方法。答:如果适当增加条纹计数的数量,如1000条或用光电法计数,只要保证计数准确,那么测量的准确度可随着计数量增加而提高。实验二4f光学系统FT及IFT系统实验一、实验目的:1.进一步掌握透镜的FT性质,学习FT光路的原理2.应用4f光学FT系统观察常见图样的反傅氏变换(IFT)图像,并与FT频谱和试件图样比较3. 观察渐晕效应二、实验原理理论基础:波动方程、复振幅、光学传递函数透镜之所以能够做FT,根本原因在于透镜的二次位相因子对入射波前起到位相调制作用。若以透镜后焦面为观察平面,物体相对于会聚透镜发生变化时,可以研究透镜的FT性质。图1上图表示物体紧靠透镜放置FT光路,物体指透射型薄平面试片。采用振幅A的单色平面波照明,为求出透镜后焦面上的光强分布Uf,须逐面求出透镜前后平面光场分布、(l指lens)设物体的复振幅透过率,则有不计透镜孔径作用,透镜的复振幅透过率那么光波从透镜传播f距离后,根据菲涅尔衍射公式频率取值与后焦面坐标关系为:,不计常量相位因子将得到上式表明,透镜后焦面上的光场分布正比于物体的FT,其频率取值与后焦面坐标,其值是图2当然,由于变换式前存在位相因子,后焦面上的位相分布与物体频谱的位相分布并不等同。但对光强响应型光电转换显示器件及目视效果来说,这一位相弯曲并无影响,所以的物理意义在于其后焦面上光强分布,恰恰是物体的功率谱。图2 表示物体放置在透镜前方d0距离,可推得可见后焦面上的复振幅分布仍然正比于物体的FT。而变换式前面的二次位相因子使物体频谱产生一个位相弯曲。当d0=0时,公式(6)与图1情况完全一致,当d0=f时,公式(6)变为:此时,位相弯曲效应消失,后焦面上光场分布是物体准确的FT。这正是我们所用的FT运算光路。物体放置在透镜后方,后焦面上仍然得到物体的FT(相差一个二次位相因子)。当d=f时,即物体紧靠透镜后表面时,与紧

文档评论(0)

xjj2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档