数据挖掘原理与算法04改.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘原理与算法04改

* * 分类器性能的评估 保持法和交叉验证是两种基于给定数据随机选样划分的、常用的评估分类方法准确率的技术。 (1)保持法 把给定的数据随机地划分成两个独立的集合:训练集和测试集。通常,三分之一的数据分配到训练集,其余三分之二分配到测试集。使用训练集得到分类器,其准确率用测试集评估。 (2)交叉验证 先把数据随机分成不相交的n份,每份大小基本相等,训练和测试都进行n次。比如,如果把数据分成10份,先把第一份拿出来放在一边用作模型测试,把其他9份合在一起来建立模型,然后把这个用90%的数据建立起来的模型用上面放在一边的第一份数据做测试。这个过程对每一份数据都重复进行一次,得到10个不同的错误率。最后把所有数据放在一起建立一个模型,模型的错误率为上面10个错误率的平均。 * * 第三章 分类方法 内容提要 分类的基本概念与步骤 基于距离的分类算法 决策树分类方法 贝叶斯分类 规则归纳 与分类有关的问题 * * Thank you !!! * * 对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。 基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算量。 * * 贝叶斯分类 定义4-2 设X是类标号未知的数据样本。设H为某种假定,如数据样本X属于某特定的类C。对于分类问题,我们希望确定P(H|X),即给定观测数据样本X,假定H成立的概率。贝叶斯定理给出了如下计算P(H|X)的简单有效的方法: P(H)是先验概率,或称H的先验概率。P(X |H)代表假设H成立的情况下,观察到X的概率。P(H| X )是后验概率,或称条件X下H的后验概率。 例如,假定数据样本域由水果组成,用它们的颜色和形状来描述。假定X表示红色和圆的,H表示假定X是苹果,则P(H|X)反映当我们看到X是红色并是圆的时,我们对X是苹果的确信程度。 贝叶斯分类器对两种数据具有较好的分类效果:一种是完全独立的数据,另一种是函数依赖的数据。 * * 朴素贝叶斯分类 朴素贝叶斯分类的工作过程如下: (1)? 每个数据样本用一个n维特征向量X= {x1,x2,……,xn}表示,分别描述对n个属性A1,A2,……,An样本的n个度量。 (2) 假定有m个类C1,C2,…,Cm,给定一个未知的数据样本X(即没有类标号),分类器将预测X属于具有最高后验概率(条件X下)的类。也就是说,朴素贝叶斯分类将未知的样本分配给类Ci(1≤i≤m)当且仅当P(Ci|X) P(Cj|X),对任意的j=1,2,…,m,j≠i。这样,最大化P(Ci|X)。其P(Ci|X)最大的类Ci称为最大后验假定。根据贝叶斯定理 * * 朴素贝叶斯分类(续) (3)?由于P(X)对于所有类为常数,只需要P(X|Ci)*P(Ci)最大即可。如果Ci类的先验概率未知,则通常假定这些类是等概率的,即P(C1)=P(C2)=…=P(Cm),因此问题就转换为对P(X|Ci)的最大化(P(X|Ci)常被称为给定Ci时数据X的似然度,而使P(X|Ci)最大的假设Ci称为最大似然假设)。否则,需要最大化P(X|Ci)*P(Ci)。注意,类的先验概率可以用P(Ci)=si/s计算,其中si是类Ci中的训练样本数,而s是训练样本总数。 (4)?给定具有许多属性的数据集,计算P(X|Ci)的开销可能非常大。为降低计算P(X|Ci)的开销,可以做类条件独立的朴素假定。给定样本的类标号,假定属性值相互条件独立,即在属性间,不存在依赖关系。这样 * * 朴素贝叶斯分类(续) ?其中概率P(x1|Ci),P(x2|Ci),……,P(xn|Ci)可以由训练样本估值。 如果Ak是离散属性,则P(xk|Ci)=sik|si,其中sik是在属性Ak上具有值xk的类Ci的训练样本数,而si是Ci中的训练样本数。 如果Ak是连续值属性,则通常假定该属性服从高斯分布。因而,?? 是高斯分布函数, 而分别为平均值和标准差。 (5)?对未知样本X分类,也就是对每个类Ci,计算P(X|Ci)*P(Ci)。样本X被指派到类Ci,当且仅当P(Ci|X) P(Cj|X),1≤j≤m,j≠i,换言之,X被指派到其P(X|Ci)*P(Ci)最大的类。 * * * * 朴素贝叶斯分类举例 数据样本用属性age,income,student和credit_rating描述。类标号属性buys_co

文档评论(0)

yaocen + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档