b牄楔杮畨湥倠汤-PatternRecognition.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
该文档均来自互联网,如果侵犯了您的个人权益,请联系我们将立即删除!

Pattern Recognition Why? To provide machines with perception cognition capabilities so that they could interact independently with their environments. Pattern Recognition a natural ability of human based on some description of an object, such description is termed Pattern. Patterns and Pattern Classes Almost anything within the reach of our five senses can be chosen as a pattern: Sensory patterns: speech, odors, tastes Spatial patterns: characters, fingerprints, pictures Temporal patterns: waveforms, electrocardiograms, movies Conceptual recognition for abstract items (We will limit ourselves to deal with only physical objects/ events, but NOT abstract entities, say, concepts.) A pattern class is a group of patterns with certain common characteristics. Pattern Recognition Pattern Recognition is the science to assign an object/event of interest to one of several pre-specified categories/classes based on certain measurements or observations. Measurements are usually problem dependent. E.g. weight or height for basketball players/jockeys color for apples/oranges Feature vectors represent measurements as coordinates of points in a vector space (feature space). Pattern Recognition Systems Statistical Pattern Recognition Taps into the vast and thorough knowledge of statistics to provide a formal treatment of PR. Observations are assumed to be generated by a state of nature data can be described by a statistical model model by a set of probability functions Strength: many powerful mathematical “tools” from the theory of probability and statistics. Shortcoming: it is usually impossible to design (statistically) error-free systems. Example: OCR Major Steps Raw Features: Example Feature Extraction: OCR Example Feature Extraction Objectives: To remove irrelevant information and extract distinctive, representative information of the objects. discriminative invariant data compression = dimension reduction It is not easy! Data Modeling To build stat

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档