Detecting structural metadata with decision trees and transformation-based learning.pdfVIP

Detecting structural metadata with decision trees and transformation-based learning.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Detecting structural metadata with decision trees and transformation-based learning

Detecting Structural Metadata with Decision Trees and Transformation-Based Learning Joungbum Kim? and Sarah E. Schwarm? and Mari Ostendorf? ?Dept. of Electrical Engineering ?Dept. of Computer Science University of Washington Seattle, WA 98195. USA {bummie,sarahs,mo}@ Abstract The regular occurrence of disfluencies is a distinguishing characteristic of spontaneous speech. Detecting and removing such disflu- encies can substantially improve the usefulness of spontaneous speech transcripts. This pa- per presents a system that detects various types of disfluencies and other structural information with cues obtained from lexical and prosodic information sources. Specifically, combina- tions of decision trees and language models are used to predict sentence ends and interruption points and, given these events, transformation- based learning is used to detect edit disfluen- cies and conversational fillers. Results are re- ported on human and automatic transcripts of conversational telephone speech. 1 Introduction Automatic speech-to-text (STT) transcripts of sponta- neous speech are often difficult to comprehend even with- out the challenges arising from word recognition errors introduced by imperfect STT systems (Jones et al., 2003). Such transcripts lack punctuation that indicates clausal or sentential boundaries, and they contain a number of dis- fluencies that would not normally occur in written lan- guage. Repeated words, hesitations such as “um” and “uh”, and corrections to a sentence in mid-stream are a normal part of conversational speech. These disflu- encies are handled easily by human listeners (Shriberg, 1994), but their existence makes transcripts of sponta- neous speech ill-suited for most natural language pro- cessing (NLP) systems developed for text, such as parsers or information extraction systems. Similarly, the lack of meaningful segmentation in automatically generated speech transcripts makes them problematic to use in NLP systems, most of which are de

您可能关注的文档

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档