自回归模型AR详解哦.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
自回归模型AR详解哦

自回归模型AR(p)的整体估计 【摘要】:主要讨论时间序列的自回归模型AR(p)的参数估计问题,列出常用的普通最小二乘估计。但实际的观测值是含有随机误差的,且与自身前一个或前几个时刻的观测值有关或有依赖性,都要考虑其所含的随机误差,所以引入整体最小二乘法的思想进行参数估计,得出相应的公式,最后并以算例加以验证与分析讨论。 关键词:自回归模型;参数估计;整体最小二乘估计; A Total Least Square Estimation of Autoregressive Processes Abstract:It discusses mainly the time series autoregressive model AR (p) of the parameter estimation problem, listing commonly used ordinary least squares estimation. But the actual observation contains random error, and with their own previous or the first few moments of the observations relating to, or dependent,so we must take into account the random error it contains.We introduce the total least squares parameter Estimates, and obtain the corresponding formula . In the last give the example to the verification and analysis. Key words: autoregressive process; estimation of parameter; total least square estimation; 0 引言 时间序列分析的目标就是通过分析要素(变量)随时间变化的历史过程, 揭示其变化发展规律, 并对未来状态进行分析预测[1]。如在变形测量中,可以采用时间序列分析方法对观测数据进行分析,以便建立变形体的动态变形预测模型,并对其变形趋势进行预测。所谓时间序列的参数估计,就是在模型结构及阶次已确定的条件下,对模型参数与进行估计,使所建立的模型是实际时间序列的“最佳”拟合模型[1]。但在实际的观测中,观测值是由一定观测手段得到的,不可避免地含有随机误差,在这种情况下,普通的最小二乘估值难以保证结果的最优性。本文将整体最小二乘法的思想引入时间序列模型中,不仅考虑自身观测值的误差,同时考虑与其有关的自身前一个或前几个时刻的观测值的误差,从而进行参数估计。能够为预测得出更为准确的数据。 1 自回归模型[1] 1.1 模型 子样观测值{},白噪声序列表示为{},回归系数用表示,则可得到的AR模型: (1) 1.2模型参数的最小二乘估计 设样本观测值{},记 则AR(p)模型可以表示为 (2) 由最小二乘原理可得到模型参数的估计为 那么根据最小二乘估计值可以得到噪声的估值为 噪声方差的最小二乘估值为 2 整体最小二乘法参数估计 在进行许多时间序列分析的实际问题中,建立模型的主要目的就是在确定模型参数之后,对未来可能出现的结果进行分析预报。而结果又与自身前一个或前几个时刻的观测值有关,观测必有误差的存在,所以不能忽略之前观测值的随机误差。整体最小二乘法就是同时考虑自变量和因变量误差存在的算法。 方程(2)与线性回归方程具有相同的形式。在线性回归中y=ax+b,自变量x是确定的,y和b是随机变量。在AR(p)模型中自然也是随机变量,但在t-1时刻,它们均已确定不变,所以AR(p)模型可以看做条件线性回归模型,故可用多元回归分析中的有关方法进行参数估计[1]。作为自身前一个或前几个时刻的观测值是确定已知的,但在观测中是含有随机误差的,在计算中应该考虑其所含误差的影响。应用整体解算的方法进行解算。 2.1整体最小二乘原理及解算步骤。 TLS的基本思想可以归纳为[2]:观测方程中,不仅观测向量Y中存在误差Vy,同时系数矩阵X中也含有误差VX。此时,可用TLS方法求得参数。也就是说,在TLS中,考虑的是矩阵方程 =

文档评论(0)

haocen + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档