- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE \* MERGEFORMAT22
动态神经网络综述
摘 要
动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。本文系统介绍了该网络的几种常见模型,并在此基础之上介绍它的基本学习算法、功能、应用领域、实际推广。
关键词:动态神经网络,模型,功能,算法,应用
Abstract
Dynamic Neural Network (DNN) has been widely applied by means of the strong ability of learning and the characteristic of approximating any nonlinear function. The paper mainly introduces several models of common dynamic neural network, and dynamic neural networks function, basic algorithm, application and promotion.
Keywords: DNN, Models , Function , Algorithm , Application
1、绪论
人工神经网络(Artificial Neural Networks,简写为ANNs)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达[1]。
神经网络按是否含有延迟或反馈环节,以及与时间是否相关分为静态神经网络和动态神经网络,其中含有延迟或反馈环节,与时间直接有关的神经网络称为动态神经网络[2]。动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模中引起了工程控制领域许多学者的关注[3]。动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面。
本文第二章主要介绍了动态神经网络的分类,基本模型和算法;第三章主要介绍了动态神经网络的应用;第四章简要介绍了神经网络的改进方法。
2、DNN网络的基本模型和算法
根据结构特点,可以将动态神经网络分为3类:全反馈网络结构,部分反馈网络结构以及无反馈的网络结构。
反馈网络(Recurrent Network),又称自联想记忆网络,如下图所示:
图2-1 反馈网络模型
反馈网络的目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。
反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:
第一、网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态;
第二、系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。
反馈网络根据信号的时间域的性质的分类为
如果激活函数f(·)是一个二值型的阶跃函数,则称此网络为离散型反馈网络,主要用于联想记忆;
如果f(·)为一个连续单调上升的有界函数,这类网络被称为连续型反馈网络,主要用于优化计算。
2.1、Hopfield神经网络
1982年,美国加州工学院J.Hopfield提出了可用作联想存储器和优化计算的反馈网络,这个网络称为Hopfield神经网络(HNN)模型,也称Hopfield模型.Hopfield网络是全反馈网络的突出代表,如图2-2所示,是一种单层对称全反馈的结构。Hopfield神经网络的结构特点是:每一个神经元的输出信号通过其它神经元后,反馈到自己的输入端。Hopfield网络具有从初始状态朝着能量减小的方向变化,最终收敛到稳定状态的能力,因此Hopfield网络可以实现优化计算,联想记忆等功能[4]。
图2-2 Hopfiled网络结构图
Hopfield 神经网络是一种互连型神经网络,其演变过程是一个非线性动力学系统,可以用一组非线性差分议程描述(离散型)或微分方程(连续型)来描述。系统的稳定性可用所谓的“能量函数”进行分析。在满足条件的情况下,某种“能量函数”的能量在网络运行过程
文档评论(0)