- 1、本文档共64页,其中可免费阅读20页,需付费50金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE1
PAGE1
电子健康记录分析的基础
在上一节中,我们讨论了电子健康记录(EHR)系统的结构和重要性。本节将重点介绍电子健康记录分析的基础知识,包括数据预处理、特征提取和模型构建等关键步骤。我们将详细介绍如何利用人工智能技术对电子健康记录进行分析,以支持临床决策。
数据预处理
数据预处理是电子健康记录分析的第一步,其目的是清理和转换原始数据,使其适合后续的机器学习和数据分析任务。常见的数据预处理步骤包括数据清洗、数据集成、数据转换和数据归一化。
数据清洗
数据清洗旨在去除或修复数据中的错误、重复项和缺失值。这一步骤对于确保数据质量和模型的准确性至关重要。以下是一个简单
您可能关注的文档
- 临床决策支持:电子健康记录分析_(2).电子健康记录基础.docx
- 临床决策支持:电子健康记录分析_(3).数据标准化与互操作性.docx
- 临床决策支持:电子健康记录分析_(4).数据质量与数据治理.docx
- 临床决策支持:电子健康记录分析_(5).隐私与安全保护.docx
- 临床决策支持:电子健康记录分析_(6).自然语言处理技术.docx
- 临床决策支持:电子健康记录分析_(7).数据分析与挖掘技术.docx
- 临床决策支持:电子健康记录分析_(8).人工智能在临床决策支持中的应用.docx
- 临床决策支持:电子健康记录分析_(9).临床路径与指南的电子化.docx
- 临床决策支持:电子健康记录分析_(10).患者数据分析与个性化治疗建议.docx
- 临床决策支持:电子健康记录分析_(11).临床决策支持系统的用户界面设计.docx
- 数据仓库:Redshift:Redshift与BI工具集成.docx
- 数据仓库:Redshift:数据仓库原理与设计.docx
- 数据仓库:Snowflake:数据仓库成本控制与Snowflake定价策略.docx
- 大数据基础:大数据概述:大数据处理框架MapReduce.docx
- 实时计算:GoogleDataflow服务架构解析.docx
- 分布式存储系统:HDFS与MapReduce集成教程.docx
- 实时计算:Azure Stream Analytics:数据流窗口与聚合操作.docx
- 实时计算:Kafka Streams:Kafka Streams架构与原理.docx
- 实时计算:Kafka Streams:Kafka Streams连接器开发与使用.docx
- 数据仓库:BigQuery:BigQuery数据分区与索引优化.docx
文档评论(0)