计算智能课件 神经网络.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
人工神经网络(3) 内容 概率神经网络简介 自组织神经网络 计算智能概论复习要点 概率神经网络 概率神经网络 概率神经网络 许多研究已表明概率神经网络具有以下特性: (1)训练容易,收敛速度快,从而非常适用于实时处理; (2)可以完成任意的非线性变换,所形成的判决曲面与贝叶斯最优准则下的曲面相接近; (3)具有很强的容错性; (4)模式层的传递函数可以选用各种用来估计概率密度的核函数,并且,分类结果对核函数的形式不敏感; (5)各层神经元的数目比较固定,因而易于硬件实现; 这种网络已较广泛地应用于非线性滤波、模式分类、联想记忆和概率密度估计当中。 概率神经网络 概率神经网络 概率神经网络 概率神经网络 Unsupervised learning The main property of a neural network is an ability to learn from its environment, and to improve its performance through learning. So far we have considered supervised or active learning - learning with an external “teacher” or a supervisor who presents a training set to the network. But another type of learning also exists: unsupervised learning. Hebbian learning In 1949, Donald Hebb proposed one of the key ideas in biological learning, commonly known as Hebb’s Law. Hebb’s Law states that if neuron i is near enough to excite neuron j and repeatedly participates in its activation, the synaptic connection between these two neurons is strengthened and neuron j becomes more sensitive to stimuli from neuron i. Hebb’s Law can be represented in the form of two rules (1) If two neurons on either side of a connection are activated synchronously, then the weight of that connection is increased. (2) If two neurons on either side of a connection are activated asynchronously, then the weight of that connection is decreased. Hebb’s Law provides the basis for learning without a teacher. Learning here is a local phenomenon occurring without feedback from the environment. Hebbian learning in a neural network Hebbian learning in a neural network Hebbian learning in a neural network Hebbian learning algorithm Hebbian learning algorithm Hebbian learning example Initial and final states of the network Initial and final weight matrices Hebbian learning example Competitive learning In competitive learning, neurons compete among themselves to be activated. While in Hebbian learning, several output neurons can

文档评论(0)

zhuliyan1314 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档