Learning, Uncertainty, and Information Learning Parameters People学习,不确定,信息的学习参数的人.pptVIP

Learning, Uncertainty, and Information Learning Parameters People学习,不确定,信息的学习参数的人.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Learning, Uncertainty, and Information Learning Parameters People学习,不确定,信息的学习参数的人

Learning, Uncertainty, and Information: Learning Parameters Big Ideas November 10, 2004 Roadmap Noisy-channel model: Redux Hidden Markov Models The Model Decoding the best sequence Training the model (EM) N-gram models: Modeling sequences Shannon, Information Theory, and Perplexity Conclusion Bayes and the Noisy Channel Generative and sequence Hidden Markov Models (HMMs) An HMM is: 1) A set of states: 2) A set of transition probabilities: Where aij is the probability of transition qi - qj 3)Observation probabilities: The probability of observing ot in state i 4) An initial probability dist over states: The probability of starting in state i 5) A set of accepting states Three Problems for HMMs Find the probability of an observation sequence given a model Forward algorithm Find the most likely path through a model given an observed sequence Viterbi algorithm (decoding) Find the most likely model (parameters) given an observed sequence Baum-Welch (EM) algorithm Learning HMMs Issue: Where do the probabilities come from? Supervised/manual construction Solution: Learn from data Trains transition (aij), emission (bj), and initial (πi) probabilities Typically assume state structure is given Unsupervised Manual Construction Manually labeled data Observation sequences, aligned to Ground truth state sequences Compute (relative) frequencies of state transitions Compute frequencies of observations/state Compute frequencies of initial states Bootstrapping: iterate tag, correct, reestimate, tag. Problem: Labeled data is expensive, hard/impossible to obtain, may be inadequate to fully estimate Sparseness problems Unsupervised Learning Re-estimation from unlabeled data Baum-Welch aka forward-backward algorithm Assume “representative” collection of data E.g. recorded speech, gene sequences, etc Assign initial probabilities Or estimate from very small labeled sample Compute state sequences given the data I.e. use forward algorithm Update transition, emis

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档