Leastsquaresbased Multilayer perceptron traning with 基于最小二乘的多层感知器训练.pptVIP

Leastsquaresbased Multilayer perceptron traning with 基于最小二乘的多层感知器训练.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Leastsquaresbased Multilayer perceptron traning with 基于最小二乘的多层感知器训练

Least-squares-based Multilayer perceptron training with weighted adaptation -- Software simulation project EE 690 Design of Embodied Intelligence Outline Multilayer Perceptron Least-squares based Learning Algorithm Weighted Adaptation in training Signal-to-Noise Ratio Figure and Overfitting Software simulation project Multilayer perceptron (MLP) Multilayer perceptron (MLP) Efficient mapping from inputs to outputs Powerful universal function approximation Number of inputs and outputs determined by the data Number of hidden neurons Number of hidden layers Multilayer Perceptron Learning Back-propagation (BP) training algorithm: how much each weight is responsible for the error signal BP has two phases: Forward pass phase: feedforward propagation of input signals through network Backward pass phase: propagates the error backwards through network Least-squares based Learning Algorithm Least-squared fit (LSF): to obtain the minimum sum of squared error For underdetermined problem, LSF finds the solution with the minimum SSE For overdetermined problem, pseudo-inverse finds the solution with minimum norm Can be applied in the optimization for weights or signals on the layers Least-squares based Learning Algorithm (I) Least-squares based Learning Algorithm (I) Weights optimization with weighted LSF The location of x on the transfer function determines its effect on output signal of this layer dy/dx ? weighting term in LSF Least-squares based Learning Algorithm (II) II. Weights optimization with iterative fitting W1 can be further adjusted based on the output error Least-squares based Learning Algorithm (III) Least-squares based Learning Algorithm (III) Signal optimization with weighted adaptation The location of x on the transfer function determines how much the signal can be changed Overfitting problem Signal-to-noise ratio figure (SNRF) Sampled data: function value + noise Error signal: approximation error component + noise component Signal-to-noise ratio f

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档