Learning Parameters Donald Bren School of Informationand 学习参数唐纳德布伦信息学院.pptVIP

Learning Parameters Donald Bren School of Informationand 学习参数唐纳德布伦信息学院.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Learning Parameters Donald Bren School of Informationand 学习参数唐纳德布伦信息学院

Learning Bayesian Networks from Data Nir Friedman U.C. Berkeley /~nir Outline Introduction Bayesian networks: a review Parameter learning: Complete data Parameter learning: Incomplete data Structure learning: Complete data Application: classification Learning causal relationships Structure learning: Incomplete data Conclusion Learning (in this context) Process Input: dataset and prior information Output: Bayesian network Prior information: background knowledge a Bayesian network (or fragments of it) time ordering prior probabilities ... Bayesian Networks Bayesian Networks Qualitative part: statistical independence statements (causality!) Directed acyclic graph (DAG) Nodes - random variables of interest (exhaustive and mutually exclusive states) Edges - direct (causal) influence Monitoring Intensive-Care Patients The “alarm” network 37 variables, 509 parameters (instead of 237) Qualitative part Nodes are independent of non-descendants given their parents P(R|E=y,A) = P(R|E=y) for all values of R,A,E Given that there is and earthquake, I can predict a radio announcement regardless of whether the alarm sounds d-separation: a graph theoretic criterion for reading independence statements Can be computed in linear time (on the number of edges) d-separation Two variables are independent if all paths between them are blocked by evidence Three cases: Common cause Intermediate cause Common Effect Example I(X,Y|Z) denotes X and Y are independent given Z I(R,B) ~I(R,B|A) I(R,B|E,A) ~I(R,C|B) Quantitative Part Associated with each node Xi there is a set of conditional probability distributions P(Xi|Pai:?) If variables are discrete, ? is usually multinomial Variables can be continuous, ? can be a linear Gaussian Combinations of discrete and continuous are only constrained by available inference mechanisms What Can We Do with Bayesian Networks? Probabilistic inference: belief update P(E =Y| R = Y, C = Y) Probabilistic inference: belief revision Argmax{E,B}

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档