Least Squares Asymptotics Portlad State University最小二乘估计波特兰州立大学.pptVIP

Least Squares Asymptotics Portlad State University最小二乘估计波特兰州立大学.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Least Squares Asymptotics Portlad State University最小二乘估计波特兰州立大学

Least Squares Asymptotics Convergence of Estimators: Review Least Squares Assumptions Least Squares Estimator Asymptotic Distribution Hypothesis Testing Convergence of Estimators Let be an estimator of a parameter vector q based on a sample of size n. is a sequence of random variables. is consistent for q if Convergence of Estimators A consistent estimator is asymptotically normal if Such an estimator is called ?n-consistent. The asymptotic variance is derived from the variance of the limiting distribution of Convergence of Estimators Delta Method: ?n(qn-q) ?d N(0,S) ? ?n[a(qn)-a(q)] ?d N(0, A(q)SA(q)′) where a(.): RK ? Rr has continuous first derivatives with A(q) defined by Least Squares Assumptions A1: Linearity (Data Generating Process) yi = xi′b + ei (i=1,2,…,n) The stochastic process that generated the finite sample {yi,xi} must be stationary and asymptotic independent: limn?? ?i xixi′/n = E(xi xi′) limn?? ?i xi′yi/n = E(xi′yi) Finite 4th Moments for Regressors: E[(xikxij)2] exists and is finite for all k,j (=1,2,…,K). Least Squares Assumptions A2: Exogeneity E(ei|X) = 0 or E(ei|xi) = 0 E(ei|X) = 0 ? E(ei|xi) = 0 ? E(xikei) = 0. A2’: Weak Exogeneity E(xikei) = 0 for all i=1,2,…,n; k=1,2,…K. It is possible that E(xjkei) ? 0 for some j,k and j?i. Define gi = xiei = [xi1,xi2,…,xiK]ei, then E(gi) = E(xiei) = 0 What is Var(gi) = E(gigi′) = E(xixi′ei2)? Least Squares Assumptions We assume limn?? ?i xiei/n = E(gi) limn?? ?i xixi′ei2/n = E(gigi′) E(gi) = 0 (A3) Var(gi) = E(gigi′) = Ω is nonsingular CLT states that Least Squares Assumptions A3: Full Rank E(xixi′) = Sxx is nonsingular. Let Q = ?i xixi′/n = X′X/n limn??Q = E(xixi′) = Sxx (A1) Therefore Q is nonsingular (no multicolinearity in the limit). Least Squares Assumptions A4: Spherical Disturbances Homoscedasticity and No Autocorrelation Var(e|X) = E(ee|X) = s2In Var(gi) = E(xixi′ei2) = s2X′X CLT: Least Squares Assumptions A4’: Non-Spherical Disturba

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档