论企业客户关系管理系统中数据仓库与数据挖掘作用.docVIP

论企业客户关系管理系统中数据仓库与数据挖掘作用.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
论企业客户关系管理系统中数据仓库与数据挖掘作用

论企业客户关系管理系统中数据仓库与数据挖掘作用   【摘要】本文对数据仓库与数据挖掘技术进行了详细的分析,对数据仓库与数据挖掘技术在企业客户关系管理系统中应用的方式和技术进行了探讨。   【关键词】企业客户关系管理;数据仓库;数据挖掘   随着数据库技术、网络技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大。然而,如何有效地使用这些数据却成为一个问题,因为往往是数据丰富而知识缺乏,人们目前所使用的数据库技术无法将隐藏在数据背后的重要信息挖掘出来利用,所以如何迅速、准确、有效且适量地提供用户所需的信息,发现信息之间潜在的联系,支持管理决策就是数据挖掘和数据仓库要解决的课题,同时也是客户关系管理系统产生的必要条件和最终目的。   一、数据仓库与数据挖掘技术分析   1.1数据仓库   数据仓库是一个在企业管理和决策中面向主题的(Subject- Oriented)、集成的(Integrated)、反映历史变化的(TimeVariant)、相对稳定(Non-Volatile)的数据集合。我们可以从两个层次加以理解:首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。   整个数据仓库系统是一个包含4个层次的体系结构,具体如下:   1、数据源:是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等。   2、数据的存储与管理:是整个数据仓库系统的核心,数据仓库的组织管理方式决定了它有别???传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析,针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。   3、OLAP服务器:对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP、MOLAP和HOLAP。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。   4、前端工具:主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。   数据仓库要求数据量大,数据正确全面,所以数据在进入数据仓库前必须经过提取、转换与集成,把数据按主题分类,形成多维数据模型。它以多维数据模型为基础,实现数据的分析处理,主要用于支持管理决策。数据进入数据仓库后,一般会被长期保存,基本不会进行修改和删除操作,主要实现数据的查询。   数据仓库与传统关系型数据库不同,主要区别在于数据仓库打破了关系数据库中数据的规范性,实现了数据的重组,增加了数据冗余度;其次传统关系型数据库为了实现数据处理的及时性,要求数据尽量少,而数据仓库为了更有效的实现数据查询,要求存储的数据尽量多,实现海量存储。   1.2数据挖掘技术   数据挖掘技术,是近几年国内外迅速发展起来的一门交叉学科,涉及到数据库、统计学、人工智能与机器学习等多个领域,并在金融、商业零售、电信以及生物医学和基因分析等领域得到广泛应用。   1.2.1数据挖掘的概念   数据挖掘(Data Ming),是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,提取的知识一般可表示为概念(ConcePts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式[3]。   数据挖掘是知识发现的过程,是将未加工的数据转换为有用信息的整个过程。该过程包含一系列的步骤:确定业务对象、数据准备、数据挖掘、模式评估和知识表示[4]。   1.2.2数据挖掘的技术与方法   数据挖掘方法是以数据库为对象,基于机器学习、科学计算、统计分析等技术,形成了数据挖掘方法和技术。一般,数据挖掘常用的技术与方法可以分为以下几个

文档评论(0)

3471161553 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档