中度宫颈糜烂症状中度宫颈糜烂患课件.pptVIP

中度宫颈糜烂症状中度宫颈糜烂患课件.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
中度宫颈糜烂症状中度宫颈糜烂患课件

CS276A Text Information Retrieval, Mining, and Exploitation Lecture 7 24 Oct 2002 Standard Probabilistic IR IR based on LM One night in a hotel, I saw this late night talk show where Sergey Brin popped on suggesting the web search tip that you should think of some words that would likely appear on pages that would answer your question and use those as your search terms – let’s exploit that idea! Formal Language (Model) Traditional generative model: generates strings Finite state machines or regular grammars, etc. Example: Stochastic Language Models Models probability of generating strings in the language (commonly all strings over ∑) Stochastic Language Models Model probability of generating any string Stochastic Language Models A statistical model for generating text Probability distribution over strings in a given language Unigram and higher-order models Unigram Language Models Bigram (generally, n-gram) Language Models Other Language Models Grammar-based models (PCFGs), etc. Probably not the first thing to try in IR Using Language Models in IR Treat each document as the basis for a model (e.g., unigram sufficient statistics) Rank document d based on P(d | q) P(d | q) = P(q | d) x P(d) / P(q) P(q) is the same for all documents, so ignore P(d) [the prior] is often treated as the same for all d But we could use criteria like authority, length, genre P(q | d) is the probability of q given d’s model Very general formal approach The fundamental problem of LMs Usually we don’t know the model M But have a sample of text representative of that model Estimate a language model from a sample Then compute the observation probability Language Models for IR Language Modeling Approaches Attempt to model query generation process Documents are ranked by the probability that a query would be observed as a random sample from the respective document model Multivariate approach Multinomial approach Retrieval based on probabilistic LM Treat the generation of queries as

文档评论(0)

2017meng + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档