一种通用FPGA位元电路.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一种通用FPGA位元电路

一种通用FPGA位元电路   摘 要:针对目前不同类型FPGA要求的位元电路不一致现象,提出了一种通用的FPGA位元电路,该位元电路不仅适用于任意结构的反熔丝/熔丝FPGA,还可以单独的存储1和0,对反熔丝/熔丝熔通后的电阻特性也没有具体要求。   关键词:现场可编程逻辑门阵列;反熔丝;位元电路;逻辑模块   FPGA(Field Programmable Gate Array),即现场可编程逻辑门阵列,是当今集成电路半定制设计中的重要组成部分,具有结构灵活,功能完善,集成度高,设计周期短的特点,受到了越来越多的用户的欢迎;并且随着集成电路工艺制程的不断更新,FPGA的速度也得到了极大的提高。FPGA一般分为反熔丝型、EPROM型及SRAM型。   基于Flash的FPGA一般需要采用特殊的结构,造价很高;基于SRAM的FPGA器件虽然不需要特殊的工艺,可以用一般的CMOS工艺实现,但是这种FPGA的必威体育官网网址性及可靠性都不高;反熔丝/熔丝FPGA的必威体育官网网址性及可靠性都很高,市场上也有很多的反熔丝/熔丝结构,有些完全可以于CMOS工艺兼容。因此反熔丝/熔丝FPGA具有很好的发展前景。   在反熔丝/熔丝FPGA中,反熔丝/熔丝结构对FPGA的性能至关重要,这些反熔丝/熔丝结构击穿后的电阻特性不一致,大至10K欧姆,小的只有几欧姆,因此基于反熔丝/熔丝结构的位元电路需要单独设计。在本论文中提出的这种位元电路对反熔丝/熔丝结构击穿后的电阻没有特殊要求,因此具有重复利用性。因为篇幅有限,在此只叙述此位元电路在反熔丝FPGA中的应用,此位元电路可以完全应用到熔丝FPGA中。   1 新型反熔丝/熔丝位元电路   反熔丝/熔丝位元电路是控制反熔丝/熔丝完成逻辑编程的电路,图1所示是反熔丝位元电路,实框中是反熔丝存储单元电路图,该存储单元可以单独的存储0和1。写状态时加编程高压,让其中一个反熔丝电容熔通为一个小电阻,另一个反熔丝电容保持原状态;读取时,在熔通电容一端加电源电压,通过熔通后的小电阻传输高电平,完成1的存储;在熔通电容一端加低电平,通过熔通后的小电阻传输低电平,完成0的存储。可见位元电路输出高低电平是根据节点电压的变化来判断,与节点电流没有关系,因此对击穿后的电阻特性没有特殊要??。   对于熔丝位元电路只需将反熔丝结构换成熔丝结构,写状态时加编程高压,让其中一个熔丝熔断,另一个熔丝保持常态;读取时,在保持常态的熔丝一端加电源电压,通过熔丝传输高电平,完成1的存储,在保持常态的熔丝一端加低电平,通过熔丝传输低电平,完成0的存储。   图1的框外是一个MOS管,此MOS管是作为开关用的,当data输出0时,此开关关闭,X0与Y0断开,当data输出1时,此开关打开,X0与Y0实际上是连在一起的,此时从X0输入信号,Y0的输出信号即为X0。   2 反熔丝位元电路的写入过程   如图1所示,每个反熔丝存储结构包括两个反熔丝C1、C2,高压管M1、M2以及一个起编程控制作用的或非门。反熔丝采用MOS管做电容,利用栅氧击穿来熔通。或非门的两端分别接在行译码(WL)和列译码(BL)上,当反熔丝存储结构工作在编程模式的时候,WL、BL端同时输入低电平,通过或非门输出高电平,使高压管M1处于开启状态,这样就使反熔丝电容的一端接地;同时PRG_OEM端接低电平关断,以保护后面的普通管不受编程高压的影响。   此时在PRG_VDD端加编程高压(0.35μm工艺为15V),PRG_GND端加低压信号,则C1两端由于电压差很大(15V),被烧断,C2两端的电压相同,仍保持原来的状态,称处于该状态的反熔丝存储结构为状态一,如图2所示。相反的,当PRG_VDD端加低电压,PRG_GND端加编程高电压时,C2两端电压差达到15V,被烧断,C1两端电压基本相同,保持原来的状态,我们称处于该状态的反熔丝存储结构为状态二,如图2所示。   编程完成后,使或非门输入端的WL、BL信号都为高电平,M1处于关断状态,PRG_OEM端接高电平,M2管打开,这时电路可以简化为图2。状态一中,当PRG_VDD加电源电压(一般为5V),data输出高电平1,即状态一可以存储1;状态二中,当PRG_GND加低电压,data输出低电平,即状态二可以存储0。   在该反熔丝存储单元中使用两个电容而不用一个的原因是:如果只采用一个反熔丝,当存储0时,其一定不能加高压编程,即反熔丝不能被烧断,这就会出现M3管的栅极的电平不能确定的情况发生。   3 反熔丝位元电路的读出过程   图2所示是编程后的反熔丝位元电路,当反熔丝位元电路工作在读取状态时,PRG_VDD接高电平(电源电压,一般为5V),PRG_GND接低电平。此时,状态一(即存储1状态)中,由于C1原来

文档评论(0)

189****7685 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档