- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
在线行人特征标签方法改进同步定位和制图技术——用于行人导航和建筑物自动测绘
Improving Simultaneous Localization and Mapping for Pedestrian Navigation and Automatic Mapping of Buildings by using Online Human-Based Feature Labeling Patrick Robertson, Michael Angermann, Mohammed Khider, German Aerospace Center (DLR) Slides from: “Improving Simultaneous Localization and Mapping for Pedestrian Navigation and Automatic Mapping of Buildings by using Online Human-Based Feature Labeling”, in Proc. IEEE/ION PLANS 2010, May 2010, Palm Springs, CA, USA. SLAM in Robotics Simultaneous Localization and Mapping - identified by robotics community in mid ‘80s! Premise: Localization using odometry and sensing of known landmarks is easy! Mapping of landmarks given known location and orientation (pose) is easy! Simultaneous Localization and Mapping is hard! What about SLAM for Humans? Human pedestrians are not robots but share some similarities with them Visual sensors (eyes) Odometry (in humans: sensed by proprioception), can be measured using inertial sensors Path and planning and execution For humans: little or no direct access to senses and functions Our central assumption: The pedestrian is able to actively control motion without violating physical constraints (i.e. walls, etc) Raw NavShoe Odometry Results FootSLAM Human-Recognizable Places An Example of Placestamps The PlaceSLAM Dynamic Bayesian Network (DBN) Intuitive Explanation of the Sequential Monte Carlo Estimator FootSLAM lets particles, or hypotheses, explore the state space of odometry errors, like evolution of drift as well as the association of places In this way, every particle is trying a slightly “differently bent piece of wire” Particles are weighted by their “compatibility” with their individual PlaceSLAM map their individual FootSLAM map optional sensor readings, such as GPS, magnetometer We can show that this is optimal in the Bayesian sense! Illustration of Proposal Function 1 Illustration of Proposal Function 2 Algorithm Summary Weight update Intuitive Illustration Intuitive Il
文档评论(0)