- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
space向量空间
7 - * 7 - * If S={v1, v2,…, vk} is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S, the span of a set: span (S) a spanning set of a vector space: If every vector in a given vector space can be written as a linear combination of vectors in a given set S, then S is called a spanning set of the vector space. 7 - * Notes: Notes: 7 - * Ex 5: (A spanning set for R3) Sol: 7 - * Lecture 7 Vector Space Last Time - Properties of Determinants - Introduction to Eigenvalues - Applications of Determinants - Vectors in Rn Elementary Linear Algebra R. Larsen et al. (5 Edition) TKUEE翁慶昌-NTUEE SCC_10_2007 7 - * Lecture 6: Eigenvalue and Vectors Today Vector Spaces and Applications Subspaces of Vector Spaces Spanning Sets and Linear Independence Basis and Dimension Rank of a Matrix and Systems of Linear Equations Reading Assignment: Secs. 4.2-4.6 of Textbook Homework #3 due Next Time Rank of a Matrix and Systems of Linear Equations (Cont.) Coordinates and Change of Basis Applications of Vector Spaces Length and Dot Product in Rn Inner Product Spaces Reading Assignment: Secs 4.7- 5.2 7 - * Lecture 6: Elementary Matrices Determinants Today Vector Spaces Subspaces of Vector Spaces Spanning Sets and Linear Independence Basis and Dimension Rank of a Matrix and Systems of Linear Equations 7 - * What Did You Actually Learn about Determinant? 7 - * 4.2 Vector Spaces Vector spaces: Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every u, v, and w in V and every scalar (real number) c and d, then V is called a vector space. Addition: (1) u+v is in V (2) u+v=v+u (3) u+(v+w)=(u+v)+w (4) V has a zero vector 0 such that for every u in V, u+0=u (5) For every u in V, there is a vector in V denoted by –u such that u+(–u)=0 7 - * Scalar multiplication: (6) is in V.
文档评论(0)