- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
细观力学混凝土破坏
2.3.2 细观力学与混凝土破坏
由混凝土材料组成的工程结构, 如高坝、桥梁、海洋平台、核电站、隧道、地基基础及边坡等是基础设施建设中重要的组成部分. 混凝土材料是以水泥为主要胶结材料, 拌合一定比例的砂、石和水, 经过搅拌、振捣、养护等工序后, 逐渐凝固硬化而成的复合材料. 粗骨料和硬化水泥砂浆两种主要组成材料的成分、性质、配比以及粘结作用均对混凝土的力学特性有不同程度的影响, 这使混凝土比其他单一材料具有更为复杂的力学性能.混凝土力学特性 (宏观应力–应变关系和破坏机制) 是进行大坝、海洋平台、边坡等混凝土结构抗震设计及静、动力仿真分析的重要基础之一, 也是目前研究的薄弱环节.
混凝土是由水、水泥和粗细骨料组成的复合材料。一般从特征尺寸和研究方法的侧重点不同将混凝土内部结构分为三个层次[] (如图2-2):(1)微观层次(Micro-level)。材料的结构单元尺度在原子、分子量级,即从小于10-7cm~10-4cm着眼于水泥水化 物的微观结构分析。由晶体结构及分子结构组成,可用电子显微镜观察分析,是材料科学的研究对象;(2)细观层次(Meso-level)。从分子尺度到宏观尺度,其结构单元尺度变化范围在10-4厘米至几厘米,或更大些,着眼于粗细骨料、水泥水化物、孔隙、界面等细观结构,组成多相复合材料,可按各类计算模型进行数值分析。在这个层次上,混凝土被认为是一种由粗骨料、硬化水泥砂浆和它们之间的过渡区(粘结带)组成的三相材料。砂浆中的孔隙很小而量多,且随机分布,水泥砂浆力学性能可以看作细观均质损伤体。相同配合比、相同条件的砂浆试件,通常其力学性能也比较稳定,可以由试验直接测定。由泌水、干缩和温度变化引起粗骨料和水泥砂浆之间产生初始粘结裂缝,而这些细观内部裂隙的发展将直接影响混凝土的宏观力学性能;(3)宏观层次(Macro-level)。特征尺寸大于几厘米,混凝土作为非均质材料存在着一种特征体积,一般认为是相当于3~4倍的最大骨料体积。当小于特征体积时,材料的非均质性质将会十分明显;当大于特征体积时,材料假定为均质。有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变的关系成为宏观的应力应变关系。
[25]: ①混凝土有效模量及平均应力、应变的研究;②混凝土细观力学试验研究;③细观层次混凝土损伤的本构关系研究; ④混凝土细观力学数值模拟。
①混凝土有效模量及平均应力、应变的研究;
求解复合材料有效性能的方法和模型很多,常用的几种细观力学方法(自洽法,稀疏法等)均可应用。
最早计算混凝土弹性模量时,在细观层次混凝土被认为是由骨料和水泥浆体所组成的两相复合材料,利用该模型根据H-S界限准则得到的混凝土弹性模量远大于实验数据。 NilsenMonteiro[26]和simeonovAhmad[27]利用H-S界限准则和实验数据分析了混凝土的弹性模量,得出混凝土应该被视为是由骨料、界面过渡区和水泥浆体组成的三相复合材料。此后,大多数混凝土细观力学模型都采用三相细观力学模型。随着对混凝土的微观结构组成的研究不断深入,人们对混凝土的微观结构有了更全面、更深层次的认识。
为了能尽可能的考虑到混凝土微观各组分对混凝土宏观弹性性能的影响,让所求得的混凝土有效模量与实际情况更为接近,近年来混凝土细观力学模型研究从以往的单一尺度向多尺度发展,许多研究者提出了多尺度下混凝土细观力学模型。
Guoqiang Li[28-29]将混凝土视为是由骨料、界面过渡区和水泥浆体三均质相组成的三相复合材料,建立混凝土三相细观力学球模型,计算出了混凝土的有效模量。他们在前人给出的用于研究两相复合材料有效体积模量的三相球模型的基础之上提出了四相球模型,用于计算三相复合材料的有效体积模量。该模型将复合材料分为是一个等效三相球模型与一个等效两相球模型的叠加,即首先把骨料跟ITZ(界面过渡区)作为是一个两相球模型,进行分析,再将骨料跟ITZ用一个等效相代替,与外面的水泥浆体及基体组成等效三相球模型进行分析。该模型可以考虑最大骨料粒径几骨料级配对混凝土有效体积模量的影响。利用该模型计算所得结果也试验结果很接近。通过模型计算发现,最大骨料粒径、骨料级配以及界面过渡区都对混凝土的有效模量有很大的影响
J.C.Nadeau等[30]提出了一种多尺度模型来计算混凝土的有效模量,将其表示成以下参数的函数: 细骨料、粗骨料和微观孔洞缺陷的体积分数、尺寸分布和材料弹性性能; 水灰比和水泥用量; ITZ内的水灰比梯度变化;ITz的体积分数等。考虑到界面过渡区的微观结构组成决定其非均质性,J.C.Nadeau等将界面过渡区视为是非均质相,提出相应模型计算混凝土的有效模量。
Christian Pichler等[31]提出了一种多尺度细观力学模型来研究预测水泥基材料早期
文档评论(0)