项目反应论资料.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
项目反应论资料

项目反应理论   项目反应理论(item response theory)也称潜在特质理论或潜在特质模型,是一种现代心理测量理论,其意义在于可以指导项目筛选和测验编制。项目反应理论假设被试有一种“潜在特质”,潜在特质是在观察分析测验反应基础上提出的一种统计构想,在测验中,潜在特质一般是指潜在的能力,并经常用测验总分作为这种潜力的估算。项目反应理论认为被试在测验项目的反应和成绩与他们的潜在特质有特殊的关系。通过项目反应理论建立的项目参数具有恒久性的特点,意味着不同测量量表的分数可以统一。项目反应理论通过项目反应曲线综合各种项目分析的资料,使我们综合直观地看出项目难度、鉴别度等项目分析的特征,从而起到指导项目筛选和编制测验比较分数等作用。   一、项目反应理论的概念项目反应理论(Item Response Theory, IRT)是一系列 HYPERLINK /view/75115.htm \t _blank 心理统计学模型的总称,是针对经典测量理论(Classical Test Theory,简称CTT) 的局限性提出来的。IRT是用来分析考试成绩或者问卷调查数据的数学模型,这些模型的目标是来确定的潜在心理特征(latent trait)是否可以通过测试题被反应出来,以及测试题和被测试者之间的互动关系。   目前广泛应用在心理和教育测量领域,基于IRT理论的计算机自适应测试(CAT)是CAA常用的测试方法。潜在特质模型(latent trait model)认为,在被试样本可观察到的测试成绩和基于该成绩不可观察的特质或能力之间存在着联系。   二、IRT的理论体系(三条基本假设)   –假设一:能力单维性假设——指组成某个测验的所有项目都是测量同一潜在特质;   – 假设二:局部独立性假设——指对某个被试而言,项目间无相关存在; – 假设三:项目特征曲线假设——指对被试某项目的正确反映概率与其能力之间的函数关系所作的模型。   IRT最大的优点是题目参数的不变性,即题目参数的估计独立于被试组。它假定,被试在某一试题上的成绩不受他在测验中其他试题上的成绩影响;同时,在试题上各个被试的作答也是彼此独立的,仅由各被试的潜在特质水平所决定,一个被试的成绩不影响另一被???的成绩,这就叫做局部独立性假设。IRT理论所做出的一切推论都必须以局部独立性假设为前提。   三、IRT常用的模型IRT根据受测者回答问题的情况,通过对题目特征函数的运算,来推测受测者的能力。IRT的题目参数有:难度(difficulty index)、区分度(discriminative powder index)和猜测系数(guessing index)。根据参数的不同,特征函数可分为单参数模型(难度)、双参数模型(难度、区分度)和三参数模型(难度、区分度、猜测参数)等。   IRT 的模型有Logistic模型,Rasch模型,Lord的正态卵形曲线模型等二十余种。下面以Logistic模型为例进行简要介绍:   ⑴ Logistic单参数模型(难度)公式(参照 戴海琦编写的《心理与教育测量》,下同):   ⑵ Logistic双参数模型(难度、区分度)公式如下:   ⑶ Logistic三参数模型(难度、区分度、猜测参数)公式如下:   其中:   D=1.702;   θ:受测者能力估计值;   a:题目的区分度,它的值越大说明题目对受测者的区分程度越高;   b:题目的难度;   c:题目的猜测系数,它的值越大,说明不论受测者能力高低,都容易猜对;   P(θ):能力为θ的人答对此题目的概率。   如何选择恰当的模型进行参数估计是题库选题的关键。不同的模型具有不同的特点,适合于不同条件下的使用。就上面所列的三种模型而言:   单参数模型比较简单,使用较为方便,但它对项目参数性质的要求较为苛刻;   双参数模型要求项目的猜测系数较小;   三参数模型虽然具有涵盖较多项目信息的优点,但亦给参数估计带来更为复杂的工作。   因此,虽然关于模型选择标准现在尚无定论,不过,可以从命题方式、记分方式、参数性质、样本人数、模型的强健性、假设的满足与否等方面得到一些选题的依据。   四、参数估计参数估计是应用IRT的前提。常用极大似然法、贝叶斯等方法进行参数估计,使得所估计出的试题参数不受考生能力分布的影响,即具有参数不变性的优点。   在项目反应理论中,难度被定义为试题本身固有的特性,不随考生样本的变化而变化。该理论认为,如果考生足够多的话,每道题都会有部分人不能答对,部分人容易答对,部分人费些力气刚好能够回答对。试题的难易程度,决定于刚好能够答对的那部分人的水平高低,水平高的刚好能够答对该题就难,水平低的也能答上来

文档评论(0)

yan698698 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档