- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Since is a concave function Let A(I) = weight of clauses that are satisfied. Corollary If each clause has length at least l, then Maximum Satisfiability: Best of Two Observation: Two approximation algorithms are complementary. – Johnsons algorithm works best when clauses are long. – LP rounding algorithm works best when clauses are short. John(I) RandomRoundingLP(I) k 1-2-k 1-(1-1/k)k 1 0.5 1.0 2 0.75 0.75 3 0.875 0.704 4 0.938 0.684 5 0.969 0.672 How can we exploit this? – Run both algorithms and output better of two. – Re-analyze to get 4/3-approximation algorithm. – Better performance than either algorithm individually! Max-k-SATBestoftwo(I) 1 ( ) ← Johnson(I) 2 ( ) ← RandomRoundingLP(I) 3 if then 4 return 5 else 6 return Lemma. For any integer Proof. Theorem The Max-k-SATBestoftwo(I) algorithm is a 4/3-approximation algorithm for MAX-SAT Proof. Duality Duality is a very important property. In an optimization problem, the identification of a dual problem is almost always coupled with the discovery of a polynomial-time algorithm. Duality is also powerful in its ability to provide a proof that a solution is indeed optimal. Given a linear program (LP) in which the objective is to maximize, we shall describe how to formulate a dual linear program (DLP) in which the objective is to minimize and whose optimal value is identical to that of the original linear program. When referring to dual linear programs, we call the original linear program the primal. Given a primal LP, if DLP is the dual LP of LP, then LP is the dual LP of DLP. Given a primal linear program (LP) in standard form, we define the dual linear program (DLP) as Subject to Primal-dual Primal: Subject to Subject to Dual: Now suppose we want to develop a lower bound on the optimal value of this LP. One way to do this is to find constraints that “loo
文档评论(0)