VAR在资产投资组合中的发展前景 VAR for a Portfolio of Options Commodities as an asset class going forward.pptVIP
- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
VAR在资产投资组合中的发展前景VARforaPortfolioofOptions
Model for price forecasting Auto regression Integrated Moving Average Model (ARIMA ) The mathematical models of the persistence, or autocorrelation, in a time series which calls …. Box and Jenkins ARIMA model ARIMA is a method for determining two things: 1. How much of the past should be used to predict the next observation (length of weights)2. The values of the weights.For example; y(t) = 1/3 * y(t-3) + 1/3 * y(t-2) + 1/3 * y(t-1) y(t) = 1/6 * y(t-3) + 4/6 * y(t-2) + 1/6 * y(t-1) Source: ARIMA(p,d,q): A nonseasonal ARIMA model is classified as an ARIMA(p,d,q) model, where: p is the number of autoregressive terms, d is the number of nonseasonal differences, and q is the number of lagged forecast errors in the prediction equation ( In this case, we choose d = 0) Rules for identifying ARIMA model Identifying the order of differencing and the constant: Rule 1: If the series has positive autocorrelations out to a high number of lags, then it probably needs a higher order of differencing. Rule 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations are all small and pattern less, then the series does not need a higher order of differencing. If the lag-1 autocorrelation is -0.5 or more negative, the series may be over differenced.? BEWARE OF OVERDIFFERENCING!! Rule 3: The optimal order of differencing is often the order of differencing at which the standard deviation is lowest. Rules for identifying ARIMA model Rule 4: A model with no orders of differencing assumes that the original series is stationary (among other things, mean-reverting). A model with one order of differencing assumes that the original series has a constant average trend (e.g. a random walk or SES-type model, with or without growth). A model with two orders of total differencing assumes that the original series has a time-varying trend (e.g. a random trend or LES-type model). Rule 5: A model with no orders of differencing normally includes a constan
文档评论(0)