ancestral informative marker selection and population structure visualization using sparse laplacian eigenfunctions祖先的信息标记选择和人口结构可视化使用稀疏的拉普拉斯算子的特征函数.pdfVIP

ancestral informative marker selection and population structure visualization using sparse laplacian eigenfunctions祖先的信息标记选择和人口结构可视化使用稀疏的拉普拉斯算子的特征函数.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
ancestral informative marker selection and population structure visualization using sparse laplacian eigenfunctions祖先的信息标记选择和人口结构可视化使用稀疏的拉普拉斯算子的特征函数

Ancestral Informative Marker Selection and Population Structure Visualization Using Sparse Laplacian Eigenfunctions Jun Zhang* Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America Abstract Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA) has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs) without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph Laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM) to predict individuals’ continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising too

您可能关注的文档

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档