基于后验概率的支持向量机吴高巍.pdfVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于后验概率的支持向量机吴高巍

ISSN 1000-1239/CN 11-1777/TP Journal of Computer Research and Development 2(2):196 ~ 202, 2005 1 2, 3 2 吴高巍  陶 卿  王 珏 1 (  100080) 2 (  100080) 3 (  230031) (w ugaowei @) Support Vector Machines Based on Posteriori Probability 1 2, 3 2 Wu Gaowei , Tao Qing , and Wang Jue 1 (Intelligent InformanceProcessing Open Laboratory, Instituteof Computing Technology , Chinese Academy of Sciences, Beijing 100080) 2 (Laboratory of Computer System and IntelligenceScience, Institute of Automation, Chinese Academy of Sciences, Beij ing 100080) 3 (2 nd Department, Ne Star Research Inst of Applied Tech, Hef ei 230031) Abstract To solve uncertain classification problem, an SVM (support vector machine)is trained to behave like a Bayesian optimal classifier based on the training data.The idea is to weigh each unbalanced training sample by a posteriori probability.A w hole framework of posteriori probability support vector machine (PPSVM )is presented and SVM is reformulated into PPSVM.The linear separability, margin, optimal hyperplane and soft margin algorithms are discussed.A new optimization problem is obtained and a new definition of support vector is given.In fact, PPSVM is motivated by statistical learning theory and is an extension of regular SVM.An empirical method is also proposed for determining the posteriori probability. Tw o artificial examples show that PPSVM formulation is reasonable if the class-conditional probability is know n, and some real experiments demonstrate that the weighted data cases by some empirical methods can produce better results than regular SVM. Key words support vector machines;classification;posterior probability;margin;maximal margin algo- rithm;uncertain classification problem   在支持向量机(support vector machines, SVM )中, 训练样本总是具有明确的类别信息, 而对

文档评论(0)

hhuiws1482 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档