- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Lecture5缺失值处理策略
The depression trial * * 5. Part II: Multiple imputation * Data set with missing values Result Completed set * * General principles * Informal justification * The algorithm * Pooling information * Hypothesis testing * * MI in practice * MI in practice A simulation-based approach to missing data 1. Generate M 1 plausible versions of . Complete Cases ^ ^ ^ ^ ^ ^ = imputation for Mth dataset 2. Analyze each of the M datasets by standard complete-data methods. 3. Combine the results across the M datasets (M =3-5 is usually OK). * MI in practice... Step 1 Generate M 1 plausible versions of via software, i.e. obtain M different datasets. ? An assumption we make: the data are MCAR or MAR, i.e. the missing data mechanism is ignorable. ? Should use as much information is available in order to achieve the best imputation. ? If the percentage of missing data is high, we need to increase M. * How many datasets to create? The efficiency of an estimator based on M imputations is , where γ is the fraction of missing information. Efficiency of multiple imputation (%) γ M 0.1 0.3 0.5 0.7 0.9 3 97 91 86 81 77 5 98 94 91 88 85 10 99 97 95 93 92 20 100 99 98 97 96 * MI in practice... Step 2 Analyze each of the M datasets by standard complete-data methods. ? Let b be the parameter of interest. ? is the estimate of b from the complete-data analysis of the mth dataset. (m = 1… M) ? is the variance of from the analysis of the mth dataset. * MI in practice... Step 3 Combine the results across the M datasets. ? is the combined inference for b. ? Variance for is between within * Software 1. Joe Schafer’s software from his web site. ($0) /%7Ejls/misoftwa.html Schafer has written publicly available software primarily for S-plus. There is a stand-alone Windows package for data that is multivariate normal. This web site contains much useful information regarding multiple imputatio
您可能关注的文档
- D4_1微分中值定理.ppt
- D2_4函数的连续性.ppt
- D6_2微积分基本定理(N--L公式).ppt
- D5_4有理函数积分.ppt
- D5_2不定积分的变量替换(换元)法.ppt
- DCL-32作业指导书.doc
- D 4_4 函数的单调性与凸性.ppt
- D6_3换元法与分部积分法.ppt
- D6_4广义(反常)积分.ppt
- D2_2函数的极限.ppt
- 第十一章 电流和电路专题特训二 实物图与电路图的互画 教学设计 2024-2025学年鲁科版物理九年级上册.docx
- 人教版七年级上册信息技术6.3加工音频素材 教学设计.docx
- 5.1自然地理环境的整体性 说课教案 (1).docx
- 4.1 夯实法治基础 教学设计-2023-2024学年统编版九年级道德与法治上册.docx
- 3.1 光的色彩 颜色 电子教案 2023-2024学年苏科版为了八年级上学期.docx
- 小学体育与健康 四年级下册健康教育 教案.docx
- 2024-2025学年初中数学九年级下册北京课改版(2024)教学设计合集.docx
- 2024-2025学年初中科学七年级下册浙教版(2024)教学设计合集.docx
- 2024-2025学年小学信息技术(信息科技)六年级下册浙摄影版(2013)教学设计合集.docx
- 2024-2025学年小学美术二年级下册人美版(常锐伦、欧京海)教学设计合集.docx
文档评论(0)