- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
陶瓷烧成工艺制度与窑炉
一 陶瓷烧成
烧成是指坯体在高温下发生一系列物理化学反应,使坯体矿物组成与显微结构发生显著变化,外形尺寸固定,强度提高,最终获得某种特定使用性能陶瓷制品的过程。
坯体在烧成过程中的物理化学反应,如表1所示:
温度范围 物化反应 低温阶段(常温~300℃) 排除残余水分 氧化分解阶段(300~950℃) 排除结构水、有机物,碳和无机物氧化,碳酸盐、硫酸盐分解,晶型转变 高温阶段(950~烧成温度) 上述氧化、分解继续,生产液相。固相溶解,形成新晶相和晶体长大,釉熔融。 釉熔融冷却阶段(烧成温度~室温) 液相析晶,液相过冷凝固,晶型转变。
二 烧成工艺制度
烧成制度包括温度制度、气氛制度和压力制度。影响产品性能的重要因素是温度和气氛,压力制度旨在温度和气氛制度的实现。温度制度包括升温速度、烧成时间和保温时间,冷却速度等参数。
2.1 烧成温度曲线的制定
烧成温度曲线表示由室温加热到烧成温度,再由烧成温度冷却至室温的烧成过程全部的温度—时间变化情况。烧成温度曲线的性质取决于下列因素:
①烧成时坯体中的反应速度。坯体的组成、原料性质以及高温中发生的化学变化均影响反应的速度。
②坯体的厚度、大小及坯体的热传导能力。
③窑炉的结构、形式和热容,以及窑具的性质和装窑密度。
2.1.1 升温速度的确定
低温阶段:升温速度主要取决于坯体入窑时的水分。氧化分解阶段:升温速度主要取决于原料的纯度和坯件的厚度,此外,也与气体介质的流速和火焰性质有关。高温阶段:升温速度主要取决于窑的结构、装窑密度以及坯件收缩变化的程度。
2.1.2 烧成温度及保温时间的确定
烧成温度必须在坯体的烧结范围之内,而烧结范围必须控制在线收缩(体积收缩)达到最大而显气孔率接近于零(细瓷吸水率0.5%)的一段温度范围。最适宜的烧成温度或止火温度可根据坯料的加热收缩曲线和显气孔率变化曲线来确定。保温时间的确定原则是保证所需液相量平稳地增加,不致使坯体变形。
2.1.3 冷却速度的确定
冷却速度的确定主要取决于坯体厚度以及坯内液相的凝固速度。
2.2 气氛制度
气体介质对含有较多铁的氧化物、硫化物、硫酸盐以及有机杂质等陶瓷坯料影响很大。同一坯体在不同气体介质中加热,其烧结温度、最终烧成收缩、过烧膨胀以及收缩速率、气孔率均不同,故要根据坯料化学矿物组成,以及烧成过程各阶段的物理化学变化规律,恰当选择气体介质(气氛)。
2.3 压力制度
窑内合理的压力制度是实现温度制度和气氛制度的保证。为保持合理的压力制度,可采取调节总烟道闸板和排烟孔小闸板来控制抽力;控制好氧化幕、急冷气幕以及抽余热风机的风量与风压,并适当控制烧嘴油量,调节车下风压和风量等办法。
三 陶瓷烧结方法
3.1 常压烧结
常压烧结又称为普通烧结,指烧结过程中无外加压力,只在常压下即自然大气条件下,置于可加热的窑炉中,在热能作用下,坯体由粉末聚集体变成晶粒结合体,多孔体变成致密体。它是烧结工艺中最传统、最简便、最广泛使用的一种方法。
3.2 热压烧结
热压是加压成型和加热烧结同时进行的工艺。热压的优点有:
热压时,由于粉体处于热塑性状态,形变阻力小,易于塑性流动和致密化,因此成型压力仅为冷压法的1/10;
由于同时加温加压,有助于粉末颗粒的接触和扩散、流动等传质过程,降低烧结温度和缩短烧结时间,因而抑制晶粒的长大;
热压法容易获得接近理论密度、气孔率接近于零的烧结体,容易得到细晶粒的组织,容易实现晶粒的取向效应和控制含有高蒸汽压成分的系统的组成变化,因而容易得到具有良好机械性能、电学性能的产品;
能生产形状较复杂、尺寸较精确的产品。
热压法的缺点:生产率低、成本高。
3.3 热等静压(HIP)
热等静压的热力传递介质为惰性气体,热等静压工艺是将粉末压坯或装入包套的粉料放入高压容器中,使粉料经高温和均衡压力的作用下,被烧结成致密体。图1为热等静压装置图。
图1 热等静压装置图
1—压力容器;2—气体介质;3—压坯;4—包套;5—加热炉
热等静压强化了压制和烧结过程,降低烧结温度,消除空隙,避免晶粒长大,可获得高的密度和强度。同热压法相比,热等静压温度低,制品密度提高。
3.4 反应热压烧结
反应热压烧结是指在烧结传质过程中,除利用表面自由能下降和机械作用力推动外,再加上一种化学反应能作为推动力或激活能,以降低烧结温度,亦即降低了烧结难度以获得致密陶瓷体。
3.5 反应烧结(反应成型)
反应烧结(反应成型)是通过多孔坯体同气相或液相发生化学反应,使坯体质量增加,孔隙减小,并烧结成为具有一定强度和尺寸精度的成品的工艺。同其它烧
文档评论(0)