M3 CSR Multi-view, multi-scale and multi-component cascade shape regression.pdfVIP

M3 CSR Multi-view, multi-scale and multi-component cascade shape regression.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
M3 CSR Multi-view, multi-scale and multi-component cascade shape regression.pdf

Image and Vision Computing 47 (2016) 19–26 Contents lists available at ScienceDirect Image and Vision Computing journal homepage: /locate/imavis M3 CSR: Multi-view, multi-scale and multi-component cascade shape regression☆ Jiankang Deng a, Qingshan Liu a,?, Jing Yang a, Dacheng Tao b a B-DAT Laboratory, School of Information and Control, Nanjing University of Information and Technology, Nanjing 210044, China b QCIS Laboratory, Faculty of Engineering and Information Technology, University of Technology Sydney, 81 Broadway Street, Ultimo, NSW 2007, Australia article info Article history: Received 27 February 2015 Received in revised form 17 August 2015 Accepted 30 November 2015 Available online 15 December 2015 Keywords: Face alignment Cascade shape regression Multi-view Multi-scale Multi-component abstract Automatic face alignment is a fundamental step in facial image analysis. However, this problem continues to be challenging due to the large variability of expression, illumination, occlusion, pose, and detection drift in the realworld face images. In this paper, we present a multi-view, multi-scale and multi-component cascade shape regression (M3CSR) model for robust face alignment. Firstly, face view is estimated according to the deformable facial parts for learning view speci?ed CSR, which can decrease the shape variance, alleviate the drift of face detection and accelerate shape convergence. Secondly, multi-scale HoG features are used as the shape-index features to incorporate local structure information implicitly, and a multi-scale optimization strategy is adopted to avoid trapping in local optimum. Finally, a component-based shape re?nement process is developed to further improve the performance of face alignment. Extensive experiments on the IBUG dataset and the 300-W challenge dataset demonstrate the superiority of the proposed method over the state-of-the-art methods. ? 2015 Elsevier B.V. All rights reserved. 1. Introduction Automatic facial landmark local

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档