Local linear neighbor reconstruction for multi-view data.pdfVIP

Local linear neighbor reconstruction for multi-view data.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Local linear neighbor reconstruction for multi-view data.pdf

Pattern Recognition Letters 84 (2016) 56–62 Contents lists available at ScienceDirect Pattern Recognition Letters journal homepage: /locate/patrec Local linear neighbor reconstruction for multi-view dataR Linlin Zong a,b, Xianchao Zhang b,?, Hong Yu b, Qianli Zhao a,b, Feng Ding b a Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China b School of Software, Dalian University of Technology, Dalian, China article info Article history: Received 18 July 2015 Available online 23 August 2016 Keywords: Multi-view similarity Similarity construction Local linear neighbor abstract Graph based multi-view data analysis has become a hot topic in the past decade, and multi-view similarity matrix is fundamental for such tasks. Existing multi-view similarity matrix construction methods cannot learn local geometrical information in the original data space from multiple views simultaneously. Considering the fact that an appropriate similarity matrix is block-wise with intra-class similarity, it is more reasonable to learn a similarity matrix by using local geometrical information in multiple original data space. In this paper, we propose to construct a uni?ed similarity matrix by using local linear neighbors in multiple views. In each view, the similarity matrix can be reconstructed with the weights of the neighbors of each data point in the original space. In multiple views, we seek for a uni?ed similarity matrix which consists of the similarity matrix in each view. The uni?ed similarity matrix can be used for spectral clustering, label propagation and other graph based learning algorithms. Experimental results show that spectral clustering and label propagation algorithms using the uni?ed similarity matrix outperform those using other multi-view similarity matrices, they also outperform typical multi-view spectral clustering algorithms and typical multi-view label propagation algorithms. ? 2016 Elsevier B.V. All rights reserved

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档