- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于智能优化算法选择特征的网络入侵检测.doc
基于智能优化算法选择特征的网络入侵检测
摘 要: 为了改善网络入侵检测的效果,提出一种智能优化算法选择特征的网络入侵检测模型。首先采用智能优化算法对网络入侵特征进行选择,得到对检测结果有重要贡献的特征,去除无效特征;然后采用支持向量机建立入侵检测分类器,最后采用KDD99数据集对模型性能进行分析。结果表明,该模型提高了网络入侵检测的准确率,而且检测速度可以满足网络安全实际应用的要求。
关键词: 智能优化算法; 网络入侵检测; 支持向量机; 入侵行为; 特征选择
中图分类号: TN915.08?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)23?0086?04
Network intrusion detection based on selection feature of
intelligent optimization algorithm
ZHAO Yuepin1, 2, SUN Jieli1
(1. Hebei University of Economics and Business, Shijiazhuang 050061, China; 2. Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050091, China)
Abstract: In order to improve the effect of network intrusion detection, a network intrusion detection model based on selection feature of intelligent optimization algorithm is proposed. The intelligent optimization algorithm is used to select the network intrusion features to obtain the important contribution feature for the detection result, and remove the invalid features. The support vector machine is employed to establish the classifier of intrusion detection. The KDD99 dataset is adopted to analyze the model performance. The results show that the model can improve the accuracy of network intrusion detection, and its detection speed can meet the requirement of network security practical application.
Keywords: intelligent optimization algorithm; network intrusion detection; support vector machine; intrusion behavior; feature selection
0 引 言
随着互联网应用的日益广泛,网络的安全性、可靠性引起了人们的广泛关注[1]。由于互联网络的开放性,人们网络安全意识淡薄,网络入侵十分频繁,再加上网络入侵手段的多样化,因此如何提高网络入侵的检测率,保证网络正常通信和数据传输安全成为网络管理领域研究中的重大课题[2?3]。
许多研究人员对网络安全问题中的入侵检测技术进行了一系列探索,提出了大量的网络入侵检测模型[3]。当前网络入侵检测模型主要有两类:传统方法和现代方法。传统网络入侵检测模型基于专家系统等实现[3?5],它们属于线性的网络入侵检测分析模型,对于小规模网络有效,然而当前网络向大规模、超大规模方向发展,网络入侵行为日益复杂,入侵行为的类型与特征间呈现出十分复杂的变化关系,传统模型无法准确描述网络入侵行为变化的特点,网络入侵检测率急剧下降,而且入侵检测结果也不可靠,没有太大的实际应用价值[6]。现代网络入侵检测方法主要基于非线性理论建立网络入侵检测模型,主要有神经网络、支持向量机等,相对于神经网络,支持向量机可以更好地拟合入侵行为与特征间的联系,在网络入侵检测应用中最为广泛[7]。在网络入侵检测建模过程中,原始网络状态特征维数相当高,若直接输入到支持向量机进行学习,那么支持向量机的输
您可能关注的文档
最近下载
- 施工劳务队伍培训.pptx VIP
- 电商平台推广员岗位职责.pptx VIP
- 历年计算机二级MS-Office真题试题库500题(含答案).docx VIP
- 山东黄金集团有限公司省内井下一线产业工人招聘笔试试题及答案2021.docx VIP
- 连续式密炼机.ppt VIP
- 2022年山东黄金集团有限公司省内井下一线产业工人招聘考试真题.docx VIP
- 山东黄金集团有限公司省内井下一线产业工人招聘考试题库2023.docx VIP
- 密炼机讲义第一节 青岛科技大学课程网站.ppt VIP
- 密炼机课程4剖析精选.ppt VIP
- 2024年春季山东黄金集团有限公司省内井下一线产业工人招聘270人笔试备考试题及答案解析.docx VIP
文档评论(0)