神經网络导论_双向联想记忆.docxVIP

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
神經网络导论_双向联想记忆

《神经网络导论》实验二——双向联想记忆专业:信息与通信工程班级: 5030班学号: 3115091011姓名: 王静实验目的熟悉Kosko型双向联想记忆网络的原理与结构,通过仿真实验掌握具体的实现方法,了解该网络的功能及性能,加深对该类网络的稳定状态和能量函数等概念的理解。实验原理我们知道,联想记忆功能分为自联想和异联想,异联想也称为双向联想记忆,简写为BAM。BAM存储器可存储两组矢量,若有如下N维矢量与P维矢量B:构成M对矢量,s=0,1,…,M-1,将它们存入BAM存储器即可进行由A到B或由B到A的双向联想,即给定A(或B)可经联想得到对应的标准样本B(或A),当有噪声或缺损时,联想功能可使样本对复原。其实,人脑就具有根据相关线索回忆和恢复信息的能力。例如,片断曲调往往可以唤起人们对整个乐曲的回忆;在人群中某人的背影就足以使我们想起一位老朋友。人工神经网络力图实现这种功能。Kosko的BAM网络就是其中的一种。如图1所示,与矢量A相应的一层有N个节点,另一层对应矢量B,有P个节点,两层间双向连接。假定B到A的传输为正向,正向的权矩阵为W,反之,A到B为反向传输,权矩阵为。 如果输入矢量由上层加入,且相应于网络中B的稳定状态,则经W之作用产生A稳定状态。同理,如果输入矢量在下层,且相应于网络中A的稳定状态,经之作用产生B稳定状态,当输入任意矢量时,网络要经若干次迭代计算演变至稳定状态,过程可示意为:…直至A、B为稳态,演变过程结束。网络学习遵从Hebb规则,若给定M个双极性矢量对:则正、反向权矩阵为:如果BAM网络神经元函数阈值为0,则称为齐次BAM网络,其能量函数为:若神经元非线性函数为f,则描述齐次BAM动态特性的差分方程为:正向联想 (1)反向联想 (2)实验内容3.1 连接权矩阵和能量值1.连接权矩阵对于给定的4对学习样本根据Hebb规则计算网络的连接权矩阵,这里只计算正向传输(即从B到A)的权重连接矩阵,反向权矩阵为正向权矩阵的转置。下面为四对学习样本A1=[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1];A2=[1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1];A3=[1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1];A4=[1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1];B1=[1,1,1,1,-1,-1,-1,-1,1,1];B2=[1,1,1,-1,-1,-1,1,1,1,-1];B3=[1,1,-1,-1,1,1,-1,-1,1,1];B4=[1,-1,1,-1,1,-1,1,-1,1,-1];已知连接权矩阵的计算公式,即W为15*10的矩阵,则带入四对样本可得连接权矩阵W为:表一:连接权矩阵422-20-20-240200-420202-2200020-2-422-2-4002020-2-20222-4-20200-2000-2024-2-202-2202-4-204-20-4024-20-22422-20-20-2400-22-20-2420-40-2220-20-200-2-4002020-2-22400-20-202202-2-202020002-2202-4-2042.能量值由实验原理可知,对于输入的一对样本A、B,其能量值计算公式为:将四对样本分别带入得能量值分别为:表二:能量值样本(A1,B1)(A2,B2)(A3,B3)(A4,B4)能量值E1E2E3E4-158-142-158-1463.2 验证网络的联想能力验证网络的联想能力即任选标准样本输入网络进行迭代运算直至网络稳定,观察上下两层的状态是否为,同样,任选输入,观察稳定后的状态。过程可按如下所示框图描述:双向联想网络实验框图根据输入矢量的长度确定输入的是哪个矢量,进而确定进入哪个循环,判断结束的条件为网络稳定,即两次得到的所求矢量相等。例如,当输入为矢量B时,前一次通过正向联想和反向联想得到,后一次再经过正向联想和反向联想得到,若两次得到的相等,则认为网络稳定则输出稳定矢量A,否则,继续迭代。以下为网络联想得到的几组实验数据输入A1A3B2A2B4输出B1B3A2B2A4可以看出,该网络具有联想能力,对于给定的输入能正确的得到输出,没有错误。3.3 验证网络的抗噪能力1.实验过程随机选取某一保准矢量的若干位取反形成畸变矢量,将其输入网络迭代至稳态,观察对应的输出是否依然正确。实验中取了如下五组数据:图中所示为输出的能量值实验一: 表三:输入A1且有一位取反标准输入矢量A1=[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1]标准输出矢量B1=[1,1,1,1,-1,-1,-1,-1,1,1]一位取

文档评论(0)

df9v4fzI + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档