神经网络教程.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

前面提到在传统的冯.诺依曼型计算机中,其计算与存贮是完全独立的两个部分。这两个独立部分——存贮器与运算器之间的通道,就成为提高计算机计算能力的瓶颈,并且只要这两个部分是独立存在的,这个问题就始终存在。对不同的计算机而言,只是这一问题的严重程度不同而已。神经网络模型从本质上解决了传统计算机的这个问题。它将信息的存贮与信息的处理完善地结合在一起。这是因为神经网络的运行是从输入到输出的值传递过程,在信息传递的同时也就完成了信息的存贮与计算。第30页,共72页,星期日,2025年,2月5日(1)神经网络的存贮能力。神经网络的存贮能力因不同的网络而不相同。这里我们给出Hopfield的一些结论。定义:一个存贮器的信息表达能力定义为其可分辨的信息类型的对数值。在一个M×1的随机存贮器RAM中,有M位地址,一位数据,它可存贮2M位信息这个RAM中,可以读/写长度为2M的信息串,而M长度为2M的信息串有22种,所以,可以分辨上述这么多种信息串。按上面的定义,M×1的RAM的存贮能力为:C=2M(位)。第31页,共72页,星期日,2025年,2月5日[定理1.1]N个神经元的神经网络的信息表达能力上限为:C<(位)。第32页,共72页,星期日,2025年,2月5日[定理1.2]N个神经元的神经网络的信息表达能力下限为:C(位)。其中[N/2]指小于或等于N/2的最大整数。[定理1.3]神经网络可以存贮2N-1个信息,也可以区分2N-1个不同的网络。第33页,共72页,星期日,2025年,2月5日神经网络的计算能力●数学的近似映射;识别和分类这些计算都可以抽象成一种近似的数学映射。如误差反播模型(BP)、对向传播网络模型(CPN)、小脑模型(CMAC)等都可以完成这种计算。●概率密度函数的估计:通过自组织的方式,开发寻找出一组等概率“锚点”,来响应在空间只“中按照一个确定概率密度函数选择到的一组矢量样本。自组织映射模型(SOM)和CPN模型可以完成这样的计算。●从二进制数据基中提取相关的知识:这种计算是形成一种知识的聚类模型,这些知识依照数据基的自组织在它们之间有某种统计上的共性,并依此来响应输入的数据基记录。脑中盒模型(BSB)有能力进行这种计算。●形成拓扑连续及统计意义上的同构映射:它是对固定概率密度函数选择的适应输入数据的一种自组织映射,其最终使得数据空间上的不同项有某种同构。SOM模型适合计算此类问题。第34页,共72页,星期日,2025年,2月5日●最近相邻模式分类:通过比较大量的存贮数据来进行模式分类,但首先应通过学习样本模式进行分类。可用层次性的存贮模式来进行分类信息的表示。绝大多数的神经网络模型均能进行这种计算。如自适应共振理论模型(ART)、双向联想记亿模型(BAM)、BP模型、玻尔兹曼机模型(BM)、BSB模型、CPN模型、Hopfield模型等等。●数据聚类:采用自组织的方法形成所选择的“颗粒”或模式的聚类,以此来响应输人数据。聚类是可变的.但要限制其鞍点的个数。对于任何新的目标,只要系统中没有对其提供聚类,都要形成新的聚类。很显然这种能力可直接应用于复杂的多目标跟踪。ART模型最适合于这种计算。●最优化问题:用来求解局部甚至是全局最优解。Hopfield模型、玻尔兹曼机模型(BM)有能力进行这种计算。第35页,共72页,星期日,2025年,2月5日自从80年代中期人工神经网络复苏以来,其发展速度及应用规模令人惊叹。技术发达国家和集团推行了一系列有关的重要研究计划、投资总额在数亿美元,出现了一批神经网络企业和在众多领域中的应用产品。有关神经网络的大型国际会议已召开了许多次,我国也召开了三次。在前几年的热浪过去之后,当前对于神经网络的研究正在转入稳定、但发展步伐依然是极其迅速的时期。这一时期的研究和发展有以下几个特点:第36页,共72页,星期日,2025年,2月5日(1)神经网络研究工作者对于研究对象的性能和潜力有了更充分的认识.从而对研究和应用的领域有了更恰当的理解。在头脑冷静下来之后,可以看到,尽管神经网络所能做的事情比当初一些狂热鼓吹者所设想的要少,但肯定比那些悲观论者要多得多。现在普遍认识到神经网络比较适用于特征提取、模式分

文档评论(0)

xiaoyao2022 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档