基于多光谱图像机器视觉的棉田杂草识别研究农业机械化工程专业论文.docxVIP

基于多光谱图像机器视觉的棉田杂草识别研究农业机械化工程专业论文.docx

  1. 1、本文档共76页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于多光谱图像机器视觉的棉田杂草识别研究农业机械化工程专业论文

优秀毕业论文 精品参考文献资料 江苏大学硕士学位论文ABSTRACT 江苏大学硕士学位论文 ABSTRACT The research work on using machine vision system to identify weed is a focus these days as well as a main trend in the future.We regard cotton and cotton field weed as the objen of this study and use multi·spectral images based on machine vision technology to achieve background segmentation,identifying and following process.The main contents of the study are as follows: (1)Background segmentation.Firstly,I establish 2-dimensional histogram by using Near-infrared image and red image and use all segmentation errors as the target to choice segment line.Secondly,I use fisher to reduce dimension and then segment image through the OUSt.Finally,I find that the method of Fisher show better effcet by compraring witll using near-infrared image or the red image alone. (2)Identification features pmposed.Using the ratio of thinning length to leaf area and the ratio of skeleton length to leaf area as two morphology features identify cotton and weed.Using average value of IR、CIR、IR/R these three multi-spectral features identify monocotyrledon and dicotyledonous weed.Using aspect,roundness as well as compactness as three shape features,and standard deviation,smoothness as two texture feature identify weed type. (3)useing method-support vector machine(SⅥ峋based Oil the limited sample and the minimum principle of the structure risk as pattem recognition identify cotton and weeds. Four models with radial basis function(rbO are established in the experiment and then using the grid search method optimize the kernel parameters and the punishment parameter C.the results show that the final correct recognition rate are 98%(cotton),92%(Setaria viridis),84%(Eleusine in.ca),82%(Cephalanoplos segetum),80%(Portulaca oleracea).Compared to use shape charactedstics single pattem recognition,total recognition precision has enhanced 12%. The study of iden曲mg cotton field weed will provide technological basis for the further development of precis

您可能关注的文档

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档