- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据与统计:统计方法
回归分析 案例 统计应用回归分析在投资风险中的应用 与一只股票相关的风险可以通过两种方式进行衡量 系统风险(systematic risk),可由市场解释的股价变动—随着股市的上涨或下跌,该股票趋于同一方向变化 特定风险(specific risk),由于其他因素引起的股价变动 系统风险通过一个称为?的指标来刻画 ?等于1,表明特定股票的变化与市场同步 ?小于1,表明这只股票要比市场更加稳定 ?大于1,说明这只股票要比市场的变化大得多 ?值通过建立特定股票的收益(因变量)对市场平均收益(自变量)的回归模型进行计算 相关关系 父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系 粮食单位面积产量y与施肥量x1 、降雨量x2 、温度x3之间的关系 商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系 散点图(例题分析) 例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的增长,这给银行业务的发展带来较大压力。为弄清不良贷款形成的原因,管理者希望利用银行业务的有关数据进行定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据 散点图(不良贷款对其他变量的散点图) 相关系数(correlation coefficient) 度量变量之间关系强度的一个统计量 对两个变量之间线性相关强度的度量称为简单相关系数 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为? 若相关系数是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为 r 也称为线性相关系数(linear correlation coefficient) 或称为Pearson相关系数 (Pearson’s correlation coefficient) 相关系数 (计算公式) 相关系数的经验解释 |r|?0.8时,可视为两个变量之间高度相关 0.5?|r|0.8时,可视为中度相关 0.3?|r|0.5时,视为低度相关 |r|0.3时,说明两个变量之间的相关程度极弱,可视为不相关 上述解释必须建立在对相关系数的显著性进行检验的基础之上 相关系数(例题分析) 一元线性回归 涉及一个自变量的回归 因变量y与自变量x之间为线性关系 被预测或被解释的变量称为因变量(dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变量称为自变量(independent variable),用x表示 因变量与自变量之间的关系用一个线性方程来表示 回答“变量之间是什么样的关系?” 方程中运用 1 个数值型因变量(响应变量) 被预测的变量 1 个或多个数值型或分类型自变量 (解释变量) 用于预测的变量 3. 主要用于预测和估计 描述因变量 y 如何依赖于自变量 x 和误差项? 的方程称为回归模型 一元线性回归模型可表示为 y = b0 + b1 x + e y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 ? 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 ?0 和 ?1 称为模型的参数 回归模型中为什么包含误差项? 误差项?是未包括在模型中而又影响着y的全部变量的替代物,但为什么不把这些变量引进到模型中来?换句话说,为什么不构造一个含有尽可能多个变量的复回归模型?古扎拉蒂在《计量经济学》一书中列出了7点理由 理由1:理论的含糊性。即使有决定y的行为的理论,而且常常是不完全的,影响y的变量不是无所知就是知而不确,因此不妨设?作为模型所排除或忽略的全部变量的替代变量 由2:数据的欠缺。即使我们明知被忽略变量中的一些变量,并因而考虑用一个复回归而不是一个简单回归,我们却不一定能得到关于这些变量的数量信息 理由3:核心变量与周边变量。影响y的全部或其中的一些变量,合起来的影响如此之小,充其量是一种非系统的或随机的影响。从实际考虑以及从成本上计算,把它们一一引入模型是划不来的。所以人们希望把它们的联合效应当作一个随机变量来看待 理由4:人类行为的内在随机性。即使我们成功地把所有有关的变量都引进到模型中来,在个别的y中仍不免有一些“内在”的随机性,这是无论我们花多少力气都解释不了的。随机项?也许能很好地反映这种随机性 理由5:糟糕的替代变量。虽然经典回归模型假定变量y和x能准确地观测,但实际上数据会受到测量误差的扰乱。由于这些变量不可直接观测,故实际上我们用替
有哪些信誉好的足球投注网站
文档评论(0)